Arabica coffee price forecast: a neural network application CNN-BLSTM
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/26101 |
Resumo: | This work proposes the use of the CNN-BLSTM neural network as a tool to predict the price of arabica coffee. The database provided by CEPEA (Center for Advanced Studies in Applied Economics) presents a historical series of the price of arabica coffee, in the period between January 1997 and December 2021. Forecast models based on neural networks LSTM, BLSTM, CNN and CNN-BLSTM were implemented, in the Python language, using the Keras framework. Results obtained, from the four models, were compared using MAE, RMSE and MAPE metrics. It was verified, for a horizon of 6 months, that the CNN-BLSTM model presented better performance. |
id |
UNIFEI_88ed8f291e3649870672872904bb5134 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/26101 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Arabica coffee price forecast: a neural network application CNN-BLSTMPredicción del precio del café arábica: una aplicación de red neuronal CNN-BLSTMPrevisão do preço do café arábica: uma aplicação de redes neurais CNN-BLSTMArtificial neural networksArabica coffeeKerasPython.Redes neuronales artificialesCafé arábicaKerasPython.Redes neurais artificiaisCafé arábicaKerasPython.This work proposes the use of the CNN-BLSTM neural network as a tool to predict the price of arabica coffee. The database provided by CEPEA (Center for Advanced Studies in Applied Economics) presents a historical series of the price of arabica coffee, in the period between January 1997 and December 2021. Forecast models based on neural networks LSTM, BLSTM, CNN and CNN-BLSTM were implemented, in the Python language, using the Keras framework. Results obtained, from the four models, were compared using MAE, RMSE and MAPE metrics. It was verified, for a horizon of 6 months, that the CNN-BLSTM model presented better performance.Este trabajo propone el uso de la red neuronal CNN-BLSTM como herramienta para predecir el precio del café arábica. La base de datos proporcionada por CEPEA (Centro de Estudios Avanzados en Economía Aplicada) presenta una serie histórica del precio del café arábica, en el período comprendido entre enero de 1997 y diciembre de 2021. Modelos de pronóstico basados en redes neuronales LSTM, BLSTM, CNN y CNN-BLSTM fueron implementados, en lenguaje Python, usando el framework Keras. Los resultados obtenidos, de los cuatro modelos, se compararon utilizando métricas MAE, RMSE y MAPE. Se verificó, para un horizonte de 6 meses, que el modelo CNN-BLSTM presentó mejor desempeño.Este trabalho propõe a utilização da rede neural CNN-BLSTM como ferramenta de previsão do preço do café arábica. A base de dados disponibilizada pelo CEPEA (Centro de Estudos Avançados em Economia Aplicada) apresenta uma série histórica, do preço do café arábica, no período entre janeiro de 1997 e dezembro de 2021. Modelos de previsão baseados em redes neurais LSTM, BLSTM, CNN e CNN-BLSTM foram implementados, na linguagem Python, utilizando o framework Keras. Resultados obtidos, dos quatro modelos, foram comparados por meio das métricas MAE, RMSE e MAPE. Verificou-se, para um horizonte de 6 meses, que o modelo CNN-BLSTM apresentou melhor desempenho.Research, Society and Development2022-02-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2610110.33448/rsd-v11i3.26101Research, Society and Development; Vol. 11 No. 3; e3511326101Research, Society and Development; Vol. 11 Núm. 3; e3511326101Research, Society and Development; v. 11 n. 3; e35113261012525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/26101/22964Copyright (c) 2022 José Airton Azevedo dos Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSantos, José Airton Azevedo dos2022-03-09T13:44:38Zoai:ojs.pkp.sfu.ca:article/26101Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:44:13.696379Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Arabica coffee price forecast: a neural network application CNN-BLSTM Predicción del precio del café arábica: una aplicación de red neuronal CNN-BLSTM Previsão do preço do café arábica: uma aplicação de redes neurais CNN-BLSTM |
title |
Arabica coffee price forecast: a neural network application CNN-BLSTM |
spellingShingle |
Arabica coffee price forecast: a neural network application CNN-BLSTM Santos, José Airton Azevedo dos Artificial neural networks Arabica coffee Keras Python. Redes neuronales artificiales Café arábica Keras Python. Redes neurais artificiais Café arábica Keras Python. |
title_short |
Arabica coffee price forecast: a neural network application CNN-BLSTM |
title_full |
Arabica coffee price forecast: a neural network application CNN-BLSTM |
title_fullStr |
Arabica coffee price forecast: a neural network application CNN-BLSTM |
title_full_unstemmed |
Arabica coffee price forecast: a neural network application CNN-BLSTM |
title_sort |
Arabica coffee price forecast: a neural network application CNN-BLSTM |
author |
Santos, José Airton Azevedo dos |
author_facet |
Santos, José Airton Azevedo dos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Santos, José Airton Azevedo dos |
dc.subject.por.fl_str_mv |
Artificial neural networks Arabica coffee Keras Python. Redes neuronales artificiales Café arábica Keras Python. Redes neurais artificiais Café arábica Keras Python. |
topic |
Artificial neural networks Arabica coffee Keras Python. Redes neuronales artificiales Café arábica Keras Python. Redes neurais artificiais Café arábica Keras Python. |
description |
This work proposes the use of the CNN-BLSTM neural network as a tool to predict the price of arabica coffee. The database provided by CEPEA (Center for Advanced Studies in Applied Economics) presents a historical series of the price of arabica coffee, in the period between January 1997 and December 2021. Forecast models based on neural networks LSTM, BLSTM, CNN and CNN-BLSTM were implemented, in the Python language, using the Keras framework. Results obtained, from the four models, were compared using MAE, RMSE and MAPE metrics. It was verified, for a horizon of 6 months, that the CNN-BLSTM model presented better performance. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-10 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/26101 10.33448/rsd-v11i3.26101 |
url |
https://rsdjournal.org/index.php/rsd/article/view/26101 |
identifier_str_mv |
10.33448/rsd-v11i3.26101 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/26101/22964 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 José Airton Azevedo dos Santos https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 José Airton Azevedo dos Santos https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 3; e3511326101 Research, Society and Development; Vol. 11 Núm. 3; e3511326101 Research, Society and Development; v. 11 n. 3; e3511326101 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052704101498880 |