Genetic algorithm and particle swarm applied in electric system optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/18871 |
Resumo: | This paper aims to present and run a composite model using Genetic Algorithm (GA) and Particle Swarm (PSO), with the assistance of parallel computing methods, to optimize the electrical distribution in a power grid based on an IEEE 14-bus system. The mathematical-computational modeling allows using the objective function to analyze the cost in relation to power or voltage as independent variables, and it is the bridge for the connection between the 2 implemented algorithms. The results presented in this article demonstrate that the methodology was implemented splendidly, in addition to obtaining an excellent computational cost and complying with the physical restrictions of network security, it also achieved global solutions in its optimization. |
id |
UNIFEI_96f4a188fbd9b9cbb559a44729df8341 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/18871 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Genetic algorithm and particle swarm applied in electric system optimization Algoritmo genético y enjambre de partículas aplicado en la optimización del sistema eléctrico Algoritmo genético e enxame de partículas aplicados na otimização de sistema de elétrico Algoritmo GenéticoEnxame de PartículasComputação ParalelaOtimizaçãoRede elétrica.Genetic AlgorithmParticle SwarmParallel ComputingOptimizationElectrical network.Algoritmo genéticoComputación ParalelaMejoramientoRed eléctricaRed eléctrica.This paper aims to present and run a composite model using Genetic Algorithm (GA) and Particle Swarm (PSO), with the assistance of parallel computing methods, to optimize the electrical distribution in a power grid based on an IEEE 14-bus system. The mathematical-computational modeling allows using the objective function to analyze the cost in relation to power or voltage as independent variables, and it is the bridge for the connection between the 2 implemented algorithms. The results presented in this article demonstrate that the methodology was implemented splendidly, in addition to obtaining an excellent computational cost and complying with the physical restrictions of network security, it also achieved global solutions in its optimization.Este artículo tiene como objetivo presentar y ejecutar un modelo compuesto utilizando Algoritmo Genético (AG) y Enjambre de Partículas (PSO), con la ayuda de métodos de computación en paralelo, para optimizar la distribución eléctrica en una red eléctrica basada en un sistema IEEE de 14 buses. El modelado matemático-computacional permite utilizar la función objetivo para el análisis de costos en relación con la potencia o voltaje como una variable independiente, y es el puente para la conexión entre los 2 algoritmos implementados. Los resultados presentados en este artículo demuestran que la metodología se implementó de manera espléndida, además de obtener un excelente costo computacional y cumplir con las limitaciones físicas de la seguridad de la red, también logró soluciones globales en su optimización.Este artigo almeja apresentar e executar um modelo composto utilizando Algoritmo Genético (AG) e Enxame de Partículas (PSO), com auxílio de métodos da computação paralela, para otimizar a distribuição elétrica em uma rede energética baseada em um Sistema IEEE de 14 barras. A modelagem matemática-computacional permite utilizar a função objetivo para análise do custo em relação à potência ou tensão como variável independente, e é a ponte para a conexão entre os 2 algoritmos implementados. Os resultados apresentados neste artigo demonstram que a metodologia foi implementada de forma esplêndida, além de obter excelente custo computacional e obedecer às restrições físicas de segurança da rede, também alcançou soluções globais em sua otimização.Research, Society and Development2021-08-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1887110.33448/rsd-v10i10.18871Research, Society and Development; Vol. 10 No. 10; e166101018871Research, Society and Development; Vol. 10 Núm. 10; e166101018871Research, Society and Development; v. 10 n. 10; e1661010188712525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/18871/16705Copyright (c) 2021 Heictor Alves de Oliveira Costa; Larissa Luz Gomes; Denis Carlos Lima Costahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCosta, Heictor Alves de OliveiraGomes, Larissa LuzCosta, Denis Carlos Lima2021-10-02T21:49:16Zoai:ojs.pkp.sfu.ca:article/18871Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:38:54.147055Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Genetic algorithm and particle swarm applied in electric system optimization Algoritmo genético y enjambre de partículas aplicado en la optimización del sistema eléctrico Algoritmo genético e enxame de partículas aplicados na otimização de sistema de elétrico |
title |
Genetic algorithm and particle swarm applied in electric system optimization |
spellingShingle |
Genetic algorithm and particle swarm applied in electric system optimization Costa, Heictor Alves de Oliveira Algoritmo Genético Enxame de Partículas Computação Paralela Otimização Rede elétrica. Genetic Algorithm Particle Swarm Parallel Computing Optimization Electrical network. Algoritmo genético Computación Paralela Mejoramiento Red eléctrica Red eléctrica. |
title_short |
Genetic algorithm and particle swarm applied in electric system optimization |
title_full |
Genetic algorithm and particle swarm applied in electric system optimization |
title_fullStr |
Genetic algorithm and particle swarm applied in electric system optimization |
title_full_unstemmed |
Genetic algorithm and particle swarm applied in electric system optimization |
title_sort |
Genetic algorithm and particle swarm applied in electric system optimization |
author |
Costa, Heictor Alves de Oliveira |
author_facet |
Costa, Heictor Alves de Oliveira Gomes, Larissa Luz Costa, Denis Carlos Lima |
author_role |
author |
author2 |
Gomes, Larissa Luz Costa, Denis Carlos Lima |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Costa, Heictor Alves de Oliveira Gomes, Larissa Luz Costa, Denis Carlos Lima |
dc.subject.por.fl_str_mv |
Algoritmo Genético Enxame de Partículas Computação Paralela Otimização Rede elétrica. Genetic Algorithm Particle Swarm Parallel Computing Optimization Electrical network. Algoritmo genético Computación Paralela Mejoramiento Red eléctrica Red eléctrica. |
topic |
Algoritmo Genético Enxame de Partículas Computação Paralela Otimização Rede elétrica. Genetic Algorithm Particle Swarm Parallel Computing Optimization Electrical network. Algoritmo genético Computación Paralela Mejoramiento Red eléctrica Red eléctrica. |
description |
This paper aims to present and run a composite model using Genetic Algorithm (GA) and Particle Swarm (PSO), with the assistance of parallel computing methods, to optimize the electrical distribution in a power grid based on an IEEE 14-bus system. The mathematical-computational modeling allows using the objective function to analyze the cost in relation to power or voltage as independent variables, and it is the bridge for the connection between the 2 implemented algorithms. The results presented in this article demonstrate that the methodology was implemented splendidly, in addition to obtaining an excellent computational cost and complying with the physical restrictions of network security, it also achieved global solutions in its optimization. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-07 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/18871 10.33448/rsd-v10i10.18871 |
url |
https://rsdjournal.org/index.php/rsd/article/view/18871 |
identifier_str_mv |
10.33448/rsd-v10i10.18871 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/18871/16705 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Heictor Alves de Oliveira Costa; Larissa Luz Gomes; Denis Carlos Lima Costa https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Heictor Alves de Oliveira Costa; Larissa Luz Gomes; Denis Carlos Lima Costa https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 10; e166101018871 Research, Society and Development; Vol. 10 Núm. 10; e166101018871 Research, Society and Development; v. 10 n. 10; e166101018871 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052753685512192 |