Analysis of wind energy in Brazil using Time Series

Detalhes bibliográficos
Autor(a) principal: Silva, Mateus dos Santos
Data de Publicação: 2022
Outros Autores: Santos, Pedro Henrique Alves Bittencourt, Santos, Ricardo Vitor Ribeiro dos, Nascimento, Mateus do, Pascoa, Marcelino Alves Rosa de, Pereira, Renato Nunes, Oliveira, Tiago Almeida de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/24827
Resumo: This paper aim was, adjust a time series model to the generated electrical energy series through the wind grid for studying trend, seasonality and making predictions. The used historic series consists in the electric energy generated through the wind grid, collected monthly by the Operador Nacional do Sistema Elétrico. The range is between jan/2007 until mar/2021, with 171 observations. The series was divides into two groups, first (jan/2007 to dec/2019) used for modelling process (calibration) and the other one (jan/2020 to mar/2021) for predictions evaluation (validation). For making predictions it was used apr/2021 to dec/2022 period. In the procedures, first was applied a Box-Cox transform on data scale for turn the model into additive. Then, the presence of trend was checked. From the transformed original series with an order 1 difference, FAC and FACP correlograms, were possible purpose some models. The residual not correlated and a lower AIC were the criteria used for the models. From the chose ones, were made prediction for jan/2020 to mar/2021 period, that were compared to the real observations through EQMP. The SARIMA (5,1,2)×(0,0,3)12 model was chosen because of its lowest EQMP. Other observation is related to the next months followed a rising pattern since 2015. The purposed model for forecasting the amount of electric energy generated by the wind grid will help the managers, giving them time for programming the proper energy’s distribution.
id UNIFEI_9b4d3c17b71eea294ab23b4c373ccf73
oai_identifier_str oai:ojs.pkp.sfu.ca:article/24827
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Analysis of wind energy in Brazil using Time SeriesAnálisis de la energía eólica en Brasil mediante Series TemporalesAnálise da energia eólica no Brasil usando Séries TemporaisWind energyTrendForecastsSARIMA.Energía eólicaTendenciaPrevisionesSARIMA.Energia eólicaTendênciaPrevisõesSARIMA.This paper aim was, adjust a time series model to the generated electrical energy series through the wind grid for studying trend, seasonality and making predictions. The used historic series consists in the electric energy generated through the wind grid, collected monthly by the Operador Nacional do Sistema Elétrico. The range is between jan/2007 until mar/2021, with 171 observations. The series was divides into two groups, first (jan/2007 to dec/2019) used for modelling process (calibration) and the other one (jan/2020 to mar/2021) for predictions evaluation (validation). For making predictions it was used apr/2021 to dec/2022 period. In the procedures, first was applied a Box-Cox transform on data scale for turn the model into additive. Then, the presence of trend was checked. From the transformed original series with an order 1 difference, FAC and FACP correlograms, were possible purpose some models. The residual not correlated and a lower AIC were the criteria used for the models. From the chose ones, were made prediction for jan/2020 to mar/2021 period, that were compared to the real observations through EQMP. The SARIMA (5,1,2)×(0,0,3)12 model was chosen because of its lowest EQMP. Other observation is related to the next months followed a rising pattern since 2015. The purposed model for forecasting the amount of electric energy generated by the wind grid will help the managers, giving them time for programming the proper energy’s distribution.El objetivo de este trabajo fue ajustar un modelo de series temporales a la serie de energía eléctrica generada a través de la red eólica para estudiar la tendencia, la estacionalidad y realizar predicciones. La serie histórica utilizada consiste en la energía eléctrica generada a través de la red eólica, recogida mensualmente por el Operador Nacional do Sistema Elétrico. El intervalo está comprendido entre enero/2007 y marzo/2021, con 171 observaciones. La serie fue dividida en dos grupos, el primero (ene/2007 a dic/2019) utilizado para el proceso de modelización (calibración) y el otro (ene/2020 a mar/2021) para la evaluación de las predicciones (validación). Para realizar las predicciones se utilizó el periodo de abr/2021 a dic/2022. En los procedimientos, primero se aplicó una transformación Box-Cox en la escala de datos para convertir el modelo en aditivo. Luego, se verificó la presencia de la tendencia. A partir de la serie original transformada con una diferencia de orden 1, los correlogramas FAC y FACP, fueron posibles para algunos modelos. El residuo no correlacionado y un AIC menor fueron los criterios utilizados para los modelos. A partir de los elegidos, se realizaron predicciones para el periodo enero/2020 a marzo/2021, que fueron comparadas con las observaciones reales a través de EQMP. Se eligió el modelo SARIMA (5,1,2)×(0,0,3)12 por su menor EQMP. Otra observación está relacionada con que los próximos meses han seguido un patrón ascendente desde 2015. El modelo propuesto para predecir la cantidad de energía eléctrica generada por la red eólica ayudará a los gestores, dándoles tiempo para programar la distribución adecuada de la energia.O objetivo deste trabalho foi ajustar um modelo de séries temporais à série de energia elétrica gerada pela matriz eólica com a finalidade de estudar a presença de tendência, sazonalidade e realizar previsões. A série histórica utilizada consiste da produção de energia elétrica gerada pela matriz eólica, coletada mensalmente pelo Operador Nacional do Sistema Elétrico. A série está compreendida entre jan/2007 a mar/2021, com 171 observações. A série foi dividida em dois subconjuntos, ao primeiro (jan/2007 a dez/2019) foi designado o processo de modelagem (calibração) e ao segundo (jan/2020 a mar/2021) foi atribuído a avaliação das previsões (validação). O horizonte de previsão contemplou o período de abr/2021 a dez/2022. Realizou-se uma transformação Box-Cox na escala dos dados para tornar o modelo aditivo. Verificou-se a presença da componente de tendência. A partir dos correlogramas da FAC e FACP da série original transformada com uma diferença de ordem 1 foi possível propor alguns modelos. Buscaram-se modelos com resíduos não correlacionados e com menor AIC. Destes, realizaram-se previsões para o período de jan/2020 a mar/21 que foram comparadas com observações reais através do EQMP. O modelo SARIMA (5,1,2)×(0,0,3)12 foi escolhido, pois apresentou o menor EQMP. Observou-se que os meses subsequentes continuam seguindo o padrão crescente que ela vem mantendo desde de 2015. O modelo proposto para prever a quantidade de energia elétrica gerada pela matriz eólica de curto prazo vai permitir que os gestores tenham tempo suficiente para programar a operação de distribuição de energia de forma adequada.Research, Society and Development2022-01-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2482710.33448/rsd-v11i1.24827Research, Society and Development; Vol. 11 No. 1; e26611124827Research, Society and Development; Vol. 11 Núm. 1; e26611124827Research, Society and Development; v. 11 n. 1; e266111248272525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/24827/21864Copyright (c) 2022 Mateus dos Santos Silva; Pedro Henrique Alves Bittencourt Santos; Ricardo Vitor Ribeiro dos Santos; Mateus do Nascimento; Marcelino Alves Rosa de Pascoa; Renato Nunes Pereira; Tiago Almeida de Oliveirahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSilva, Mateus dos Santos Santos, Pedro Henrique Alves Bittencourt Santos, Ricardo Vitor Ribeiro dosNascimento, Mateus doPascoa, Marcelino Alves Rosa dePereira, Renato Nunes Oliveira, Tiago Almeida de2022-01-16T18:08:18Zoai:ojs.pkp.sfu.ca:article/24827Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:43:15.687581Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Analysis of wind energy in Brazil using Time Series
Análisis de la energía eólica en Brasil mediante Series Temporales
Análise da energia eólica no Brasil usando Séries Temporais
title Analysis of wind energy in Brazil using Time Series
spellingShingle Analysis of wind energy in Brazil using Time Series
Silva, Mateus dos Santos
Wind energy
Trend
Forecasts
SARIMA.
Energía eólica
Tendencia
Previsiones
SARIMA.
Energia eólica
Tendência
Previsões
SARIMA.
title_short Analysis of wind energy in Brazil using Time Series
title_full Analysis of wind energy in Brazil using Time Series
title_fullStr Analysis of wind energy in Brazil using Time Series
title_full_unstemmed Analysis of wind energy in Brazil using Time Series
title_sort Analysis of wind energy in Brazil using Time Series
author Silva, Mateus dos Santos
author_facet Silva, Mateus dos Santos
Santos, Pedro Henrique Alves Bittencourt
Santos, Ricardo Vitor Ribeiro dos
Nascimento, Mateus do
Pascoa, Marcelino Alves Rosa de
Pereira, Renato Nunes
Oliveira, Tiago Almeida de
author_role author
author2 Santos, Pedro Henrique Alves Bittencourt
Santos, Ricardo Vitor Ribeiro dos
Nascimento, Mateus do
Pascoa, Marcelino Alves Rosa de
Pereira, Renato Nunes
Oliveira, Tiago Almeida de
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Mateus dos Santos
Santos, Pedro Henrique Alves Bittencourt
Santos, Ricardo Vitor Ribeiro dos
Nascimento, Mateus do
Pascoa, Marcelino Alves Rosa de
Pereira, Renato Nunes
Oliveira, Tiago Almeida de
dc.subject.por.fl_str_mv Wind energy
Trend
Forecasts
SARIMA.
Energía eólica
Tendencia
Previsiones
SARIMA.
Energia eólica
Tendência
Previsões
SARIMA.
topic Wind energy
Trend
Forecasts
SARIMA.
Energía eólica
Tendencia
Previsiones
SARIMA.
Energia eólica
Tendência
Previsões
SARIMA.
description This paper aim was, adjust a time series model to the generated electrical energy series through the wind grid for studying trend, seasonality and making predictions. The used historic series consists in the electric energy generated through the wind grid, collected monthly by the Operador Nacional do Sistema Elétrico. The range is between jan/2007 until mar/2021, with 171 observations. The series was divides into two groups, first (jan/2007 to dec/2019) used for modelling process (calibration) and the other one (jan/2020 to mar/2021) for predictions evaluation (validation). For making predictions it was used apr/2021 to dec/2022 period. In the procedures, first was applied a Box-Cox transform on data scale for turn the model into additive. Then, the presence of trend was checked. From the transformed original series with an order 1 difference, FAC and FACP correlograms, were possible purpose some models. The residual not correlated and a lower AIC were the criteria used for the models. From the chose ones, were made prediction for jan/2020 to mar/2021 period, that were compared to the real observations through EQMP. The SARIMA (5,1,2)×(0,0,3)12 model was chosen because of its lowest EQMP. Other observation is related to the next months followed a rising pattern since 2015. The purposed model for forecasting the amount of electric energy generated by the wind grid will help the managers, giving them time for programming the proper energy’s distribution.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-06
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/24827
10.33448/rsd-v11i1.24827
url https://rsdjournal.org/index.php/rsd/article/view/24827
identifier_str_mv 10.33448/rsd-v11i1.24827
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/24827/21864
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 1; e26611124827
Research, Society and Development; Vol. 11 Núm. 1; e26611124827
Research, Society and Development; v. 11 n. 1; e26611124827
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052760899715072