Machine Learning applied to home care for predicting passing away conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/36078 |
Resumo: | In home care processes, where multidisciplinary health teams take care of their patients at home, there are several challenges for resource management and remote monitoring, where, sometimes, resources are not used in main priority situations. The advent of technology, the availability of data in management systems and the new decision-making support tools bring enormous possibilities, financial return and greater comfort for patients and families. This work aims to present the application of machine learning, using the CRISP-DM methodology, to identify patients with a greater chance of hospitalization or to pass away at home. |
id |
UNIFEI_a3fb4f5448f7986d373e11440841548f |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/36078 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Machine Learning applied to home care for predicting passing away conditionsMachine Learning aplicado a la atención domiciliaria para predecir las condiciones de muerteMachine Learning aplicado à atenção domiciliar para predição de condição de óbito Atenção domiciliar à saúdeGestão em saúdeCiência de dadosAprendizado de máquinaInteligência artificial.Home careHealthcare managementMachine learningData scienceArtificial intelligence.Atención domiciliariaGestión de la saludCiencia de datosAprendizaje automáticoInteligencia artificial.In home care processes, where multidisciplinary health teams take care of their patients at home, there are several challenges for resource management and remote monitoring, where, sometimes, resources are not used in main priority situations. The advent of technology, the availability of data in management systems and the new decision-making support tools bring enormous possibilities, financial return and greater comfort for patients and families. This work aims to present the application of machine learning, using the CRISP-DM methodology, to identify patients with a greater chance of hospitalization or to pass away at home.En los procesos de atención domiciliaria, donde los pacientes son atendidos en el domicilio por equipos sanitarios multidisciplinares, existen varios retos para la gestión y seguimiento a distancia, no siendo raros los casos en los que no se utilizan recursos en situaciones realmente prioritarias. El advenimiento de la tecnología, la disponibilidad de datos en los distintos sistemas de gestión, así como las nuevas herramientas de apoyo a la decisión, traen enormes posibilidades, retorno económico y mayor cumplimiento para pacientes y familiares. Este trabajo tiene como objetivo presentar la aplicación del aprendizaje automático, utilizando la metodología CRISP-DM, para identificar pacientes con mayor probabilidad de hospitalización o muerte en el hogar.Nos processos de atenção domiciliar, onde pacientes são cuidados em casa por equipes de saúde multidisciplinares, diversos são os desafios para o gerenciamento e monitoramento à distância, não sendo raros os casos em que os recursos não são empregados nas situações realmente prioritárias. O advento da tecnologia, a disponibilidade de dados nos diversos sistemas de gestão e bem como as novas ferramentas de suporte à tomada de decisão trazem enormes possibilidades, retorno financeiro e maior conforto para pacientes e famílias. Este trabalho tem o objetivo de apresentar a aplicação de aprendizado de máquina, utilizando-se da metodologia CRISP-DM, para identificação de pacientes com maior chance de hospitalização ou óbito domiciliar.Research, Society and Development2022-10-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3607810.33448/rsd-v11i14.36078Research, Society and Development; Vol. 11 No. 14; e230111436078Research, Society and Development; Vol. 11 Núm. 14; e230111436078Research, Society and Development; v. 11 n. 14; e2301114360782525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/36078/30283Copyright (c) 2022 Daniel Henrique Cordeiro Silva; Elisa Maria do Nascimento Timohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSilva, Daniel Henrique Cordeiro Timo, Elisa Maria do Nascimento2022-11-08T13:36:27Zoai:ojs.pkp.sfu.ca:article/36078Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:50:45.673023Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Machine Learning applied to home care for predicting passing away conditions Machine Learning aplicado a la atención domiciliaria para predecir las condiciones de muerte Machine Learning aplicado à atenção domiciliar para predição de condição de óbito |
title |
Machine Learning applied to home care for predicting passing away conditions |
spellingShingle |
Machine Learning applied to home care for predicting passing away conditions Silva, Daniel Henrique Cordeiro Atenção domiciliar à saúde Gestão em saúde Ciência de dados Aprendizado de máquina Inteligência artificial. Home care Healthcare management Machine learning Data science Artificial intelligence. Atención domiciliaria Gestión de la salud Ciencia de datos Aprendizaje automático Inteligencia artificial. |
title_short |
Machine Learning applied to home care for predicting passing away conditions |
title_full |
Machine Learning applied to home care for predicting passing away conditions |
title_fullStr |
Machine Learning applied to home care for predicting passing away conditions |
title_full_unstemmed |
Machine Learning applied to home care for predicting passing away conditions |
title_sort |
Machine Learning applied to home care for predicting passing away conditions |
author |
Silva, Daniel Henrique Cordeiro |
author_facet |
Silva, Daniel Henrique Cordeiro Timo, Elisa Maria do Nascimento |
author_role |
author |
author2 |
Timo, Elisa Maria do Nascimento |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Daniel Henrique Cordeiro Timo, Elisa Maria do Nascimento |
dc.subject.por.fl_str_mv |
Atenção domiciliar à saúde Gestão em saúde Ciência de dados Aprendizado de máquina Inteligência artificial. Home care Healthcare management Machine learning Data science Artificial intelligence. Atención domiciliaria Gestión de la salud Ciencia de datos Aprendizaje automático Inteligencia artificial. |
topic |
Atenção domiciliar à saúde Gestão em saúde Ciência de dados Aprendizado de máquina Inteligência artificial. Home care Healthcare management Machine learning Data science Artificial intelligence. Atención domiciliaria Gestión de la salud Ciencia de datos Aprendizaje automático Inteligencia artificial. |
description |
In home care processes, where multidisciplinary health teams take care of their patients at home, there are several challenges for resource management and remote monitoring, where, sometimes, resources are not used in main priority situations. The advent of technology, the availability of data in management systems and the new decision-making support tools bring enormous possibilities, financial return and greater comfort for patients and families. This work aims to present the application of machine learning, using the CRISP-DM methodology, to identify patients with a greater chance of hospitalization or to pass away at home. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-25 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/36078 10.33448/rsd-v11i14.36078 |
url |
https://rsdjournal.org/index.php/rsd/article/view/36078 |
identifier_str_mv |
10.33448/rsd-v11i14.36078 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/36078/30283 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Daniel Henrique Cordeiro Silva; Elisa Maria do Nascimento Timo https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Daniel Henrique Cordeiro Silva; Elisa Maria do Nascimento Timo https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 14; e230111436078 Research, Society and Development; Vol. 11 Núm. 14; e230111436078 Research, Society and Development; v. 11 n. 14; e230111436078 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052726458187776 |