Household appliance usage recommendation based on demand forecasting and multi­objective optimization

Detalhes bibliográficos
Autor(a) principal: Feitosa, Allan Rivalles Souza
Data de Publicação: 2022
Outros Autores: Lacerda, Henrique Figuerôa, Santos, Wellington Pinheiro dos, Silva Filho, Abel Guilhermino da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/24515
Resumo: Accelerated population growth in the 21st century and increased demand for energy sources, associated with climate change, have resulted in two main challenges: the search for sustainable energy sources and the need to find more efficient ways to use extant sustainable sources. The forecasting module provides an estimate of the future usage of these appliances and it is the source of the recommended module’s suggestion. Time Series Forecasting techniques, such as Autoregressive Integrated Moving Average, Long­Short Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), and Support Vector Regression, were tested for the predictive module. Multi­objective optimization techniques such as Non­Sorted Genetic Algorithm II (NSGA II), Multi­Objective Particle Swarm Optimization (MOPSO), Speed constrained Multi-­objective Particle Swarm Optimization (SMOPSO), and Strength Pareto Evolutionary Algorithm two (SPEA2), for example, were tested for the Recommendation Module. The Forecasting and Recommendation module experiments were performed independently. In the Forecasting Module, the results and statistical tests revealed LSTM as the best­ suited technique for forecasting the loads of the majority of the appliances tested (in this case seven) in terms of root mean square error. In the experiments performed for the recommendation module, NSGA II showed a higher overall performance compared to other metrics in terms of hyper volume of the Pareto Front generated. This work presents the potential of using both Predictive Models and Multi­Objective Optimization Techniques combined to reduce energy usage in household environments.
id UNIFEI_b9401b8a9f6fa40153b834af02675c38
oai_identifier_str oai:ojs.pkp.sfu.ca:article/24515
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Household appliance usage recommendation based on demand forecasting and multi­objective optimizationRecomendación de uso de electrodomésticos basada en la predicción de la demanda y la optimización multiobjetivoRecomendação de utilização de aparelhos domésticos com base em predição de demanda e otimização multi-objetivoTime Series ForecastingMulti­-objective optimizationSmart Home SystemsRecommendation systems.Pronóstico de series de tiempoOptimización multiobjetivoSistemas inteligentes para el hogarSistemas de recomendación.Previsão de séries temporaisOtimização multiobjetivoSistemas domésticos inteligentesSistemas de recomendação.Accelerated population growth in the 21st century and increased demand for energy sources, associated with climate change, have resulted in two main challenges: the search for sustainable energy sources and the need to find more efficient ways to use extant sustainable sources. The forecasting module provides an estimate of the future usage of these appliances and it is the source of the recommended module’s suggestion. Time Series Forecasting techniques, such as Autoregressive Integrated Moving Average, Long­Short Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), and Support Vector Regression, were tested for the predictive module. Multi­objective optimization techniques such as Non­Sorted Genetic Algorithm II (NSGA II), Multi­Objective Particle Swarm Optimization (MOPSO), Speed constrained Multi-­objective Particle Swarm Optimization (SMOPSO), and Strength Pareto Evolutionary Algorithm two (SPEA2), for example, were tested for the Recommendation Module. The Forecasting and Recommendation module experiments were performed independently. In the Forecasting Module, the results and statistical tests revealed LSTM as the best­ suited technique for forecasting the loads of the majority of the appliances tested (in this case seven) in terms of root mean square error. In the experiments performed for the recommendation module, NSGA II showed a higher overall performance compared to other metrics in terms of hyper volume of the Pareto Front generated. This work presents the potential of using both Predictive Models and Multi­Objective Optimization Techniques combined to reduce energy usage in household environments.El crecimiento demográfico acelerado en el siglo XXI y la mayor demanda de fuentes de energía, asociada al cambio climático, derivaron en dos desafíos principales: la búsqueda de fuentes de energía sostenibles y la necesidad de encontrar formas más eficientes de utilizar las fuentes sostenibles existentes. El módulo de pronóstico proporciona una estimación del uso futuro de estos dispositivos y es la fuente de la sugerencia del módulo recomendado. Se probaron técnicas de predicción de series de tiempo como Long­-short Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), e Support Vector Regression para el módulo predictivo. Técnicas de optimización multiobjetivo como Non­Sorted Genetic Algorithm II (NSGA II), Multi­Objective Particle Swarm Optimization (MOPSO), Speed constrained Multi-­objective Particle Swarm Optimization (SMOPSO), and Strength Pareto Evolutionary Algorithm two (SPEA2), por ejemplo, se han probado para el módulo de recomendaciones. Los experimentos de los módulos de Predicción y Recomendación se llevaron a cabo de forma independiente. En el Módulo de Predicción, los resultados y las pruebas estadísticas revelaron al LSTM como la técnica más adecuada para predecir las cargas de la mayoría de los dispositivos probados (en este caso, siete) en términos de error cuadrático medio. En los experimentos llevados a cabo para el módulo de recomendación, el NSGA II presentó un desempeño general superior en relación al resto de métricas en términos de hipervolumen del Frente Pareto generado. Este trabajo presenta el potencial de utilizar modelos predictivos y técnicas de optimización multiobjetivo combinadas para reducir el uso de energía en entornos domésticos.O crescimento populacional acelerado no século 21 e o aumento da demanda por fontes de energia, associados às mudanças climáticas, resultaram em dois desafios principais: a busca por fontes de energia sustentáveis ​​e a necessidade de encontrar formas mais eficientes de usar as fontes sustentáveis ​​existentes. O módulo de previsão fornece uma estimativa do uso futuro desses aparelhos e é a fonte da sugestão do módulo recomendado. Técnicas de previsão de série temporal, como Long­-short Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), e Support Vector Regression, foram testadas para o módulo preditivo. Técnicas de otimização multiobjetivo, como Non-­Sorted Genetic Algorithm II (NSGA II), Multi­Objective Particle Swarm Optimization (MOPSO), Speed constrained Multi-­objective Particle Swarm Optimization (SMOPSO), e Strength Pareto Evolutionary Algorithm two (SPEA2), por exemplo, foram testados para o Módulo de Recomendação. Os experimentos dos módulos de Previsão e Recomendação foram realizados de forma independente. No Módulo de previsão, os resultados e os testes estatísticos revelaram o LSTM como a técnica mais adequada para prever as cargas da maioria dos aparelhos testados (neste caso, sete) em termos de erro quadrático médio. Nos experimentos realizados para o módulo de recomendação, o NSGA II apresentou um desempenho geral superior em relação às outras métricas em termos de hipervolume da Frente de Pareto gerada. Este trabalho apresenta o potencial do uso de Modelos Preditivos e Técnicas de Otimização MultiObjetivo combinadas para reduzir o uso de energia em ambientes domésticos.Research, Society and Development2022-01-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2451510.33448/rsd-v11i1.24515Research, Society and Development; Vol. 11 No. 1; e13411124515Research, Society and Development; Vol. 11 Núm. 1; e13411124515Research, Society and Development; v. 11 n. 1; e134111245152525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/24515/21704Copyright (c) 2022 Allan Rivalles Souza Feitosa; Henrique Figuerôa Lacerda; Wellington Pinheiro dos Santos; Abel Guilhermino da Silva Filhohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessFeitosa, Allan Rivalles SouzaLacerda, Henrique FiguerôaSantos, Wellington Pinheiro dos Silva Filho, Abel Guilhermino da2022-01-16T18:08:18Zoai:ojs.pkp.sfu.ca:article/24515Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:43:02.567315Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Household appliance usage recommendation based on demand forecasting and multi­objective optimization
Recomendación de uso de electrodomésticos basada en la predicción de la demanda y la optimización multiobjetivo
Recomendação de utilização de aparelhos domésticos com base em predição de demanda e otimização multi-objetivo
title Household appliance usage recommendation based on demand forecasting and multi­objective optimization
spellingShingle Household appliance usage recommendation based on demand forecasting and multi­objective optimization
Feitosa, Allan Rivalles Souza
Time Series Forecasting
Multi­-objective optimization
Smart Home Systems
Recommendation systems.
Pronóstico de series de tiempo
Optimización multiobjetivo
Sistemas inteligentes para el hogar
Sistemas de recomendación.
Previsão de séries temporais
Otimização multiobjetivo
Sistemas domésticos inteligentes
Sistemas de recomendação.
title_short Household appliance usage recommendation based on demand forecasting and multi­objective optimization
title_full Household appliance usage recommendation based on demand forecasting and multi­objective optimization
title_fullStr Household appliance usage recommendation based on demand forecasting and multi­objective optimization
title_full_unstemmed Household appliance usage recommendation based on demand forecasting and multi­objective optimization
title_sort Household appliance usage recommendation based on demand forecasting and multi­objective optimization
author Feitosa, Allan Rivalles Souza
author_facet Feitosa, Allan Rivalles Souza
Lacerda, Henrique Figuerôa
Santos, Wellington Pinheiro dos
Silva Filho, Abel Guilhermino da
author_role author
author2 Lacerda, Henrique Figuerôa
Santos, Wellington Pinheiro dos
Silva Filho, Abel Guilhermino da
author2_role author
author
author
dc.contributor.author.fl_str_mv Feitosa, Allan Rivalles Souza
Lacerda, Henrique Figuerôa
Santos, Wellington Pinheiro dos
Silva Filho, Abel Guilhermino da
dc.subject.por.fl_str_mv Time Series Forecasting
Multi­-objective optimization
Smart Home Systems
Recommendation systems.
Pronóstico de series de tiempo
Optimización multiobjetivo
Sistemas inteligentes para el hogar
Sistemas de recomendación.
Previsão de séries temporais
Otimização multiobjetivo
Sistemas domésticos inteligentes
Sistemas de recomendação.
topic Time Series Forecasting
Multi­-objective optimization
Smart Home Systems
Recommendation systems.
Pronóstico de series de tiempo
Optimización multiobjetivo
Sistemas inteligentes para el hogar
Sistemas de recomendación.
Previsão de séries temporais
Otimização multiobjetivo
Sistemas domésticos inteligentes
Sistemas de recomendação.
description Accelerated population growth in the 21st century and increased demand for energy sources, associated with climate change, have resulted in two main challenges: the search for sustainable energy sources and the need to find more efficient ways to use extant sustainable sources. The forecasting module provides an estimate of the future usage of these appliances and it is the source of the recommended module’s suggestion. Time Series Forecasting techniques, such as Autoregressive Integrated Moving Average, Long­Short Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), and Support Vector Regression, were tested for the predictive module. Multi­objective optimization techniques such as Non­Sorted Genetic Algorithm II (NSGA II), Multi­Objective Particle Swarm Optimization (MOPSO), Speed constrained Multi-­objective Particle Swarm Optimization (SMOPSO), and Strength Pareto Evolutionary Algorithm two (SPEA2), for example, were tested for the Recommendation Module. The Forecasting and Recommendation module experiments were performed independently. In the Forecasting Module, the results and statistical tests revealed LSTM as the best­ suited technique for forecasting the loads of the majority of the appliances tested (in this case seven) in terms of root mean square error. In the experiments performed for the recommendation module, NSGA II showed a higher overall performance compared to other metrics in terms of hyper volume of the Pareto Front generated. This work presents the potential of using both Predictive Models and Multi­Objective Optimization Techniques combined to reduce energy usage in household environments.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-03
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/24515
10.33448/rsd-v11i1.24515
url https://rsdjournal.org/index.php/rsd/article/view/24515
identifier_str_mv 10.33448/rsd-v11i1.24515
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/24515/21704
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 1; e13411124515
Research, Society and Development; Vol. 11 Núm. 1; e13411124515
Research, Society and Development; v. 11 n. 1; e13411124515
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052700284682240