Household appliance usage recommendation based on demand forecasting and multiobjective optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/24515 |
Resumo: | Accelerated population growth in the 21st century and increased demand for energy sources, associated with climate change, have resulted in two main challenges: the search for sustainable energy sources and the need to find more efficient ways to use extant sustainable sources. The forecasting module provides an estimate of the future usage of these appliances and it is the source of the recommended module’s suggestion. Time Series Forecasting techniques, such as Autoregressive Integrated Moving Average, LongShort Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), and Support Vector Regression, were tested for the predictive module. Multiobjective optimization techniques such as NonSorted Genetic Algorithm II (NSGA II), MultiObjective Particle Swarm Optimization (MOPSO), Speed constrained Multi-objective Particle Swarm Optimization (SMOPSO), and Strength Pareto Evolutionary Algorithm two (SPEA2), for example, were tested for the Recommendation Module. The Forecasting and Recommendation module experiments were performed independently. In the Forecasting Module, the results and statistical tests revealed LSTM as the best suited technique for forecasting the loads of the majority of the appliances tested (in this case seven) in terms of root mean square error. In the experiments performed for the recommendation module, NSGA II showed a higher overall performance compared to other metrics in terms of hyper volume of the Pareto Front generated. This work presents the potential of using both Predictive Models and MultiObjective Optimization Techniques combined to reduce energy usage in household environments. |
id |
UNIFEI_b9401b8a9f6fa40153b834af02675c38 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/24515 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Household appliance usage recommendation based on demand forecasting and multiobjective optimizationRecomendación de uso de electrodomésticos basada en la predicción de la demanda y la optimización multiobjetivoRecomendação de utilização de aparelhos domésticos com base em predição de demanda e otimização multi-objetivoTime Series ForecastingMulti-objective optimizationSmart Home SystemsRecommendation systems.Pronóstico de series de tiempoOptimización multiobjetivoSistemas inteligentes para el hogarSistemas de recomendación.Previsão de séries temporaisOtimização multiobjetivoSistemas domésticos inteligentesSistemas de recomendação.Accelerated population growth in the 21st century and increased demand for energy sources, associated with climate change, have resulted in two main challenges: the search for sustainable energy sources and the need to find more efficient ways to use extant sustainable sources. The forecasting module provides an estimate of the future usage of these appliances and it is the source of the recommended module’s suggestion. Time Series Forecasting techniques, such as Autoregressive Integrated Moving Average, LongShort Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), and Support Vector Regression, were tested for the predictive module. Multiobjective optimization techniques such as NonSorted Genetic Algorithm II (NSGA II), MultiObjective Particle Swarm Optimization (MOPSO), Speed constrained Multi-objective Particle Swarm Optimization (SMOPSO), and Strength Pareto Evolutionary Algorithm two (SPEA2), for example, were tested for the Recommendation Module. The Forecasting and Recommendation module experiments were performed independently. In the Forecasting Module, the results and statistical tests revealed LSTM as the best suited technique for forecasting the loads of the majority of the appliances tested (in this case seven) in terms of root mean square error. In the experiments performed for the recommendation module, NSGA II showed a higher overall performance compared to other metrics in terms of hyper volume of the Pareto Front generated. This work presents the potential of using both Predictive Models and MultiObjective Optimization Techniques combined to reduce energy usage in household environments.El crecimiento demográfico acelerado en el siglo XXI y la mayor demanda de fuentes de energía, asociada al cambio climático, derivaron en dos desafíos principales: la búsqueda de fuentes de energía sostenibles y la necesidad de encontrar formas más eficientes de utilizar las fuentes sostenibles existentes. El módulo de pronóstico proporciona una estimación del uso futuro de estos dispositivos y es la fuente de la sugerencia del módulo recomendado. Se probaron técnicas de predicción de series de tiempo como Long-short Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), e Support Vector Regression para el módulo predictivo. Técnicas de optimización multiobjetivo como NonSorted Genetic Algorithm II (NSGA II), MultiObjective Particle Swarm Optimization (MOPSO), Speed constrained Multi-objective Particle Swarm Optimization (SMOPSO), and Strength Pareto Evolutionary Algorithm two (SPEA2), por ejemplo, se han probado para el módulo de recomendaciones. Los experimentos de los módulos de Predicción y Recomendación se llevaron a cabo de forma independiente. En el Módulo de Predicción, los resultados y las pruebas estadísticas revelaron al LSTM como la técnica más adecuada para predecir las cargas de la mayoría de los dispositivos probados (en este caso, siete) en términos de error cuadrático medio. En los experimentos llevados a cabo para el módulo de recomendación, el NSGA II presentó un desempeño general superior en relación al resto de métricas en términos de hipervolumen del Frente Pareto generado. Este trabajo presenta el potencial de utilizar modelos predictivos y técnicas de optimización multiobjetivo combinadas para reducir el uso de energía en entornos domésticos.O crescimento populacional acelerado no século 21 e o aumento da demanda por fontes de energia, associados às mudanças climáticas, resultaram em dois desafios principais: a busca por fontes de energia sustentáveis e a necessidade de encontrar formas mais eficientes de usar as fontes sustentáveis existentes. O módulo de previsão fornece uma estimativa do uso futuro desses aparelhos e é a fonte da sugestão do módulo recomendado. Técnicas de previsão de série temporal, como Long-short Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), e Support Vector Regression, foram testadas para o módulo preditivo. Técnicas de otimização multiobjetivo, como Non-Sorted Genetic Algorithm II (NSGA II), MultiObjective Particle Swarm Optimization (MOPSO), Speed constrained Multi-objective Particle Swarm Optimization (SMOPSO), e Strength Pareto Evolutionary Algorithm two (SPEA2), por exemplo, foram testados para o Módulo de Recomendação. Os experimentos dos módulos de Previsão e Recomendação foram realizados de forma independente. No Módulo de previsão, os resultados e os testes estatísticos revelaram o LSTM como a técnica mais adequada para prever as cargas da maioria dos aparelhos testados (neste caso, sete) em termos de erro quadrático médio. Nos experimentos realizados para o módulo de recomendação, o NSGA II apresentou um desempenho geral superior em relação às outras métricas em termos de hipervolume da Frente de Pareto gerada. Este trabalho apresenta o potencial do uso de Modelos Preditivos e Técnicas de Otimização MultiObjetivo combinadas para reduzir o uso de energia em ambientes domésticos.Research, Society and Development2022-01-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2451510.33448/rsd-v11i1.24515Research, Society and Development; Vol. 11 No. 1; e13411124515Research, Society and Development; Vol. 11 Núm. 1; e13411124515Research, Society and Development; v. 11 n. 1; e134111245152525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/24515/21704Copyright (c) 2022 Allan Rivalles Souza Feitosa; Henrique Figuerôa Lacerda; Wellington Pinheiro dos Santos; Abel Guilhermino da Silva Filhohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessFeitosa, Allan Rivalles SouzaLacerda, Henrique FiguerôaSantos, Wellington Pinheiro dos Silva Filho, Abel Guilhermino da2022-01-16T18:08:18Zoai:ojs.pkp.sfu.ca:article/24515Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:43:02.567315Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Household appliance usage recommendation based on demand forecasting and multiobjective optimization Recomendación de uso de electrodomésticos basada en la predicción de la demanda y la optimización multiobjetivo Recomendação de utilização de aparelhos domésticos com base em predição de demanda e otimização multi-objetivo |
title |
Household appliance usage recommendation based on demand forecasting and multiobjective optimization |
spellingShingle |
Household appliance usage recommendation based on demand forecasting and multiobjective optimization Feitosa, Allan Rivalles Souza Time Series Forecasting Multi-objective optimization Smart Home Systems Recommendation systems. Pronóstico de series de tiempo Optimización multiobjetivo Sistemas inteligentes para el hogar Sistemas de recomendación. Previsão de séries temporais Otimização multiobjetivo Sistemas domésticos inteligentes Sistemas de recomendação. |
title_short |
Household appliance usage recommendation based on demand forecasting and multiobjective optimization |
title_full |
Household appliance usage recommendation based on demand forecasting and multiobjective optimization |
title_fullStr |
Household appliance usage recommendation based on demand forecasting and multiobjective optimization |
title_full_unstemmed |
Household appliance usage recommendation based on demand forecasting and multiobjective optimization |
title_sort |
Household appliance usage recommendation based on demand forecasting and multiobjective optimization |
author |
Feitosa, Allan Rivalles Souza |
author_facet |
Feitosa, Allan Rivalles Souza Lacerda, Henrique Figuerôa Santos, Wellington Pinheiro dos Silva Filho, Abel Guilhermino da |
author_role |
author |
author2 |
Lacerda, Henrique Figuerôa Santos, Wellington Pinheiro dos Silva Filho, Abel Guilhermino da |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Feitosa, Allan Rivalles Souza Lacerda, Henrique Figuerôa Santos, Wellington Pinheiro dos Silva Filho, Abel Guilhermino da |
dc.subject.por.fl_str_mv |
Time Series Forecasting Multi-objective optimization Smart Home Systems Recommendation systems. Pronóstico de series de tiempo Optimización multiobjetivo Sistemas inteligentes para el hogar Sistemas de recomendación. Previsão de séries temporais Otimização multiobjetivo Sistemas domésticos inteligentes Sistemas de recomendação. |
topic |
Time Series Forecasting Multi-objective optimization Smart Home Systems Recommendation systems. Pronóstico de series de tiempo Optimización multiobjetivo Sistemas inteligentes para el hogar Sistemas de recomendación. Previsão de séries temporais Otimização multiobjetivo Sistemas domésticos inteligentes Sistemas de recomendação. |
description |
Accelerated population growth in the 21st century and increased demand for energy sources, associated with climate change, have resulted in two main challenges: the search for sustainable energy sources and the need to find more efficient ways to use extant sustainable sources. The forecasting module provides an estimate of the future usage of these appliances and it is the source of the recommended module’s suggestion. Time Series Forecasting techniques, such as Autoregressive Integrated Moving Average, LongShort Term Memory (LSTM), Gated Recurrent Units, Echo State Networks (ESN), and Support Vector Regression, were tested for the predictive module. Multiobjective optimization techniques such as NonSorted Genetic Algorithm II (NSGA II), MultiObjective Particle Swarm Optimization (MOPSO), Speed constrained Multi-objective Particle Swarm Optimization (SMOPSO), and Strength Pareto Evolutionary Algorithm two (SPEA2), for example, were tested for the Recommendation Module. The Forecasting and Recommendation module experiments were performed independently. In the Forecasting Module, the results and statistical tests revealed LSTM as the best suited technique for forecasting the loads of the majority of the appliances tested (in this case seven) in terms of root mean square error. In the experiments performed for the recommendation module, NSGA II showed a higher overall performance compared to other metrics in terms of hyper volume of the Pareto Front generated. This work presents the potential of using both Predictive Models and MultiObjective Optimization Techniques combined to reduce energy usage in household environments. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-03 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/24515 10.33448/rsd-v11i1.24515 |
url |
https://rsdjournal.org/index.php/rsd/article/view/24515 |
identifier_str_mv |
10.33448/rsd-v11i1.24515 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/24515/21704 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 1; e13411124515 Research, Society and Development; Vol. 11 Núm. 1; e13411124515 Research, Society and Development; v. 11 n. 1; e13411124515 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052700284682240 |