Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/31258 |
Resumo: | ADHD (attention deficit hyperactivity disorder) is a neurodevelopmental disorder characterized by harmful levels of inattention, disorganization, and/or hyperactivity-impulsivity. In childhood, these symptoms often overlap with those of other disorders, and they tend to persist into adulthood, interfering with relationships and academic and work life. Diagnosis, traditionally made by assessing the patient, i.e., testing and listening to relatives and teachers, has already been aided by neuroimaging. However, the visual analysis of such images to make a psychiatric diagnosis is a complex and sometimes time-consuming task. For this reason, computer-aided diagnostic tools have increasingly evolved that, when combined with machine learning (ML) techniques, can accelerate, facilitate, and maximize the accuracy of diagnoses. Nevertheless, research evaluating ML models for classifying ADHD considering severity using images of the brain SPECT (Single Photon Emission Computed Tomography) is still very sparse. For this reason, this article aims to evaluate the performance of the ML methods: k-NN (k-Nearest Neighbors), Naive Bayes, Decision Tree, MLP (Multilayer Perceptron) and SVM (Support Vector Machine) in the classification of ADHD. The main goal of this analysis is to check whether the subjects have the disorder or not, and to classify the severity of those who have it using SPECT images. A database was created from SPECT images and diagnostic reports. After pre-processing these data, the best hyperparameters for the ML methods were searched, trained/tested and finally statistically compared. The best results were obtained with SVM and k-NN, with 98% accuracy. Although ADHD diagnosis by neuroimaging is not yet a standard clinical procedure, we argue that this study can contribute to ADHD diagnosis research and support methods for the development of CAD (computer-aided diagnosis) systems. |
id |
UNIFEI_bfce4db8aa7368ce26ae27c422987af7 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/31258 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECTComparación de métodos predictivos de Machine Learning para diagnosticar los niveles de Trastorno por Déficit de Atención/Hiperactividad utilizando imágenes SPECTComparação de métodos preditivos de Machine Learning para diagnosticar os níveis do Transtorno de Déficit de Atenção/Hiperatividade usando imagens SPECTADHD assisted diagnosisComputer-aided diagnosisMachine learningNuclear medicineSPECT.Diagnóstico assistido de TDAHDiagnóstico auxiliado por computadorAprendizado de máquinaMedicina nuclearSPECT.Diagnóstico asistido por TDAHDiagnóstico asistido por computadoraAprendizaje automáticoMedicina nuclearSPECT.ADHD (attention deficit hyperactivity disorder) is a neurodevelopmental disorder characterized by harmful levels of inattention, disorganization, and/or hyperactivity-impulsivity. In childhood, these symptoms often overlap with those of other disorders, and they tend to persist into adulthood, interfering with relationships and academic and work life. Diagnosis, traditionally made by assessing the patient, i.e., testing and listening to relatives and teachers, has already been aided by neuroimaging. However, the visual analysis of such images to make a psychiatric diagnosis is a complex and sometimes time-consuming task. For this reason, computer-aided diagnostic tools have increasingly evolved that, when combined with machine learning (ML) techniques, can accelerate, facilitate, and maximize the accuracy of diagnoses. Nevertheless, research evaluating ML models for classifying ADHD considering severity using images of the brain SPECT (Single Photon Emission Computed Tomography) is still very sparse. For this reason, this article aims to evaluate the performance of the ML methods: k-NN (k-Nearest Neighbors), Naive Bayes, Decision Tree, MLP (Multilayer Perceptron) and SVM (Support Vector Machine) in the classification of ADHD. The main goal of this analysis is to check whether the subjects have the disorder or not, and to classify the severity of those who have it using SPECT images. A database was created from SPECT images and diagnostic reports. After pre-processing these data, the best hyperparameters for the ML methods were searched, trained/tested and finally statistically compared. The best results were obtained with SVM and k-NN, with 98% accuracy. Although ADHD diagnosis by neuroimaging is not yet a standard clinical procedure, we argue that this study can contribute to ADHD diagnosis research and support methods for the development of CAD (computer-aided diagnosis) systems.El TDAH (trastorno por déficit de atención con hiperactividad) es un trastorno del neurodesarrollo caracterizado por niveles nocivos de falta de atención, desorganización y/o hiperactividad-impulsividad. En la infancia, estos síntomas a menudo se superponen con los de otros trastornos y tienden a persistir en la edad adulta, interfiriendo con las relaciones y la vida académica y laboral. El diagnóstico, tradicionalmente realizado valorando al paciente, es decir, testeando y escuchando a familiares y profesores, ya ha sido ayudado por la neuroimagen. Sin embargo, el análisis visual de tales imágenes para hacer un diagnóstico psiquiátrico es una tarea compleja y, a veces, lenta. Por esta razón, las herramientas de diagnóstico asistidas por computadora han evolucionado cada vez más y, cuando se combinan con técnicas de aprendizaje automático (ML), pueden acelerar, facilitar y maximizar la precisión de los diagnósticos. Sin embargo, la investigación que evalúa los modelos ML para clasificar el TDAH considerando la gravedad utilizando imágenes del cerebro SPECT (tomografía computarizada por emisión de fotón único) es todavía muy escasa. Por ello, este artículo tiene como objetivo evaluar el desempeño de los métodos ML: k-NN (k-Nearest Neighbors), Naive Bayes, Decision Tree, MLP (Multilayer Perceptron) y SVM (Support Vector Machine) en la clasificación del TDAH. El principal objetivo de este análisis es comprobar si los sujetos tienen el trastorno o no, y clasificar la gravedad de los que lo tienen mediante imágenes SPECT. Se creó una base de datos a partir de imágenes SPECT e informes de diagnóstico. Después de preprocesar estos datos, se buscaron, entrenaron/probaron y finalmente se compararon estadísticamente los mejores hiperparámetros para los métodos de ML. Los mejores resultados se obtuvieron con SVM y k-NN, con un 98% de precisión. Aunque el diagnóstico de TDAH por neuroimagen aún no es un procedimiento clínico estándar, argumentamos que este estudio puede contribuir a la investigación del diagnóstico de TDAH y apoyar métodos para el desarrollo de sistemas CAD (diagnóstico asistido por computadora).O TDAH (transtorno de déficit de atenção e hiperatividade) é um transtorno do neurodesenvolvimento caracterizado por níveis prejudiciais de desatenção, desorganização e/ou hiperatividade-impulsividade. Na infância, esses sintomas muitas vezes se sobrepõem aos de outros transtornos e tendem a persistir na vida adulta, interferindo nos relacionamentos e na vida acadêmica e profissional. O diagnóstico, tradicionalmente feito pela avaliação do paciente, ou seja, testando e ouvindo familiares e professores, já tem sido auxiliado pela neuroimagem. No entanto, a análise visual de tais imagens para fazer um diagnóstico psiquiátrico é uma tarefa complexa e às vezes demorada. Por esse motivo, têm evoluído cada vez mais ferramentas de diagnóstico auxiliadas por computador que, quando combinadas com técnicas de aprendizado de máquina (ML), podem acelerar, facilitar e maximizar a precisão dos diagnósticos. No entanto, pesquisas avaliando modelos de ML para classificar o TDAH considerando a gravidade usando imagens do cérebro SPECT (Tomografia Computadorizada por Emissão de Fóton Único) ainda são muito escassas. Por esse motivo, este artigo tem como objetivo avaliar o desempenho dos métodos de ML: k-NN (k-Nearest Neighbors), Naive Bayes, Decision Tree, MLP (Multilayer Perceptron) e SVM (Support Vector Machine) na classificação do TDAH. O principal objetivo desta análise é verificar se os sujeitos têm ou não o transtorno e classificar a gravidade daqueles que o têm usando imagens SPECT. Um banco de dados foi criado a partir de imagens SPECT e relatórios de diagnóstico. Após o pré-processamento desses dados, os melhores hiperparâmetros para os métodos de ML foram pesquisados, treinados/testados e por fim comparados estatisticamente. Os melhores resultados foram obtidos com SVM e k-NN, com 98% de acurácia. Embora o diagnóstico de TDAH por neuroimagem ainda não seja um procedimento clínico padrão, argumentamos que este estudo pode contribuir para a pesquisa do diagnóstico de TDAH e apoiar métodos para o desenvolvimento de sistemas CAD (computer-aided diagnosis).Research, Society and Development2022-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3125810.33448/rsd-v11i8.31258Research, Society and Development; Vol. 11 No. 8; e54811831258Research, Society and Development; Vol. 11 Núm. 8; e54811831258Research, Society and Development; v. 11 n. 8; e548118312582525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/31258/26786Copyright (c) 2022 Marcilio de Oliveira Meira; Anne Magaly de Paula Canuto; Bruno Motta de Carvalho; Roberto Levi Cavalcanti Jaleshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMeira, Marcilio de Oliveira Canuto, Anne Magaly de Paula Carvalho, Bruno Motta de Jales, Roberto Levi Cavalcanti 2022-07-01T13:34:06Zoai:ojs.pkp.sfu.ca:article/31258Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:47:39.953803Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT Comparación de métodos predictivos de Machine Learning para diagnosticar los niveles de Trastorno por Déficit de Atención/Hiperactividad utilizando imágenes SPECT Comparação de métodos preditivos de Machine Learning para diagnosticar os níveis do Transtorno de Déficit de Atenção/Hiperatividade usando imagens SPECT |
title |
Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT |
spellingShingle |
Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT Meira, Marcilio de Oliveira ADHD assisted diagnosis Computer-aided diagnosis Machine learning Nuclear medicine SPECT. Diagnóstico assistido de TDAH Diagnóstico auxiliado por computador Aprendizado de máquina Medicina nuclear SPECT. Diagnóstico asistido por TDAH Diagnóstico asistido por computadora Aprendizaje automático Medicina nuclear SPECT. |
title_short |
Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT |
title_full |
Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT |
title_fullStr |
Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT |
title_full_unstemmed |
Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT |
title_sort |
Comparison of Machine Learning predictive methods to diagnose the Attention Deficit/Hyperactivity Disorder levels using SPECT |
author |
Meira, Marcilio de Oliveira |
author_facet |
Meira, Marcilio de Oliveira Canuto, Anne Magaly de Paula Carvalho, Bruno Motta de Jales, Roberto Levi Cavalcanti |
author_role |
author |
author2 |
Canuto, Anne Magaly de Paula Carvalho, Bruno Motta de Jales, Roberto Levi Cavalcanti |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Meira, Marcilio de Oliveira Canuto, Anne Magaly de Paula Carvalho, Bruno Motta de Jales, Roberto Levi Cavalcanti |
dc.subject.por.fl_str_mv |
ADHD assisted diagnosis Computer-aided diagnosis Machine learning Nuclear medicine SPECT. Diagnóstico assistido de TDAH Diagnóstico auxiliado por computador Aprendizado de máquina Medicina nuclear SPECT. Diagnóstico asistido por TDAH Diagnóstico asistido por computadora Aprendizaje automático Medicina nuclear SPECT. |
topic |
ADHD assisted diagnosis Computer-aided diagnosis Machine learning Nuclear medicine SPECT. Diagnóstico assistido de TDAH Diagnóstico auxiliado por computador Aprendizado de máquina Medicina nuclear SPECT. Diagnóstico asistido por TDAH Diagnóstico asistido por computadora Aprendizaje automático Medicina nuclear SPECT. |
description |
ADHD (attention deficit hyperactivity disorder) is a neurodevelopmental disorder characterized by harmful levels of inattention, disorganization, and/or hyperactivity-impulsivity. In childhood, these symptoms often overlap with those of other disorders, and they tend to persist into adulthood, interfering with relationships and academic and work life. Diagnosis, traditionally made by assessing the patient, i.e., testing and listening to relatives and teachers, has already been aided by neuroimaging. However, the visual analysis of such images to make a psychiatric diagnosis is a complex and sometimes time-consuming task. For this reason, computer-aided diagnostic tools have increasingly evolved that, when combined with machine learning (ML) techniques, can accelerate, facilitate, and maximize the accuracy of diagnoses. Nevertheless, research evaluating ML models for classifying ADHD considering severity using images of the brain SPECT (Single Photon Emission Computed Tomography) is still very sparse. For this reason, this article aims to evaluate the performance of the ML methods: k-NN (k-Nearest Neighbors), Naive Bayes, Decision Tree, MLP (Multilayer Perceptron) and SVM (Support Vector Machine) in the classification of ADHD. The main goal of this analysis is to check whether the subjects have the disorder or not, and to classify the severity of those who have it using SPECT images. A database was created from SPECT images and diagnostic reports. After pre-processing these data, the best hyperparameters for the ML methods were searched, trained/tested and finally statistically compared. The best results were obtained with SVM and k-NN, with 98% accuracy. Although ADHD diagnosis by neuroimaging is not yet a standard clinical procedure, we argue that this study can contribute to ADHD diagnosis research and support methods for the development of CAD (computer-aided diagnosis) systems. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-29 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/31258 10.33448/rsd-v11i8.31258 |
url |
https://rsdjournal.org/index.php/rsd/article/view/31258 |
identifier_str_mv |
10.33448/rsd-v11i8.31258 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/31258/26786 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 8; e54811831258 Research, Society and Development; Vol. 11 Núm. 8; e54811831258 Research, Society and Development; v. 11 n. 8; e54811831258 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052715658903552 |