Efficiency analysis of the use of model matching algorithm for plant counting

Detalhes bibliográficos
Autor(a) principal: Arantes, Bruno Henrique Tondato
Data de Publicação: 2020
Outros Autores: Arantes, Leticia Tondato, Santos, Janyne Moura dos, Ventura, Matheus Vinicius Abadia, Gomes, Luiz Fernando
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
DOI: 10.33448/rsd-v9i7.4576
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/4576
Resumo: Often the producer does not know the exact number of fruit trees on his property or is unaware over the years due to the death of many plants. As a result, in order to avoid the need for a field trip for manual counting, this research aimed to use a model matching algorithm in parallel with the use of a low-cost drone to assess its efficiency in automatic counting of spaced canopy plants and joints. The red, green and blue bands captured by the Phantom 4 Advanced were used, and the red band with linear enhancement for the cut option, to facilitate the distinction of the orchard and the rest of the targets in the image and to obtain a better result in the detection of fruit trees. The flight was performed at a height of 80 meters with an overlap between bands of 70% and in the same range of 80%. As a result, 97.98% of fruit trees were detected in plants with well-spaced crowns and 88.52% were identified in plants with crowns together. The numbers of false positives found were small for all situations tested, these false positives being weeds. It is concluded that the technique is efficient for counting plants with fair and spaced crowns, and detection can be improved when there is a good contrast between what you want to detect and the targets that are not of interest.
id UNIFEI_dbc948180b512dd921d901372ce5acef
oai_identifier_str oai:ojs.pkp.sfu.ca:article/4576
network_acronym_str UNIFEI
network_name_str Research, Society and Development
spelling Efficiency analysis of the use of model matching algorithm for plant countingAnálisis de eficiencia del uso del algoritmo de comparación de modelos para el conteo de plantasAnálise de eficiência do uso de algoritmo de correspondência de modelo para contagem de plantasArboles frutalesDetección remotaDroneAgricultura de precisiónÁrvores frutíferasSensoriamento remotoDroneAgricultura de precisão.Fruit treesRemote sensingDronePrecision agriculture.Often the producer does not know the exact number of fruit trees on his property or is unaware over the years due to the death of many plants. As a result, in order to avoid the need for a field trip for manual counting, this research aimed to use a model matching algorithm in parallel with the use of a low-cost drone to assess its efficiency in automatic counting of spaced canopy plants and joints. The red, green and blue bands captured by the Phantom 4 Advanced were used, and the red band with linear enhancement for the cut option, to facilitate the distinction of the orchard and the rest of the targets in the image and to obtain a better result in the detection of fruit trees. The flight was performed at a height of 80 meters with an overlap between bands of 70% and in the same range of 80%. As a result, 97.98% of fruit trees were detected in plants with well-spaced crowns and 88.52% were identified in plants with crowns together. The numbers of false positives found were small for all situations tested, these false positives being weeds. It is concluded that the technique is efficient for counting plants with fair and spaced crowns, and detection can be improved when there is a good contrast between what you want to detect and the targets that are not of interest.A menudo, el productor no sabe la cantidad exacta de árboles frutales en su propiedad o no se da cuenta a lo largo de los años debido a la muerte de muchas plantas. Como resultado, para evitar la necesidad de un viaje de campo para el conteo manual, esta investigación tuvo como objetivo utilizar un algoritmo de comparación de modelos en paralelo con el uso de un dron de bajo costo para evaluar su eficiencia en el conteo automático de plantas de dosel espaciadas y juntas. Se utilizaron las bandas rojas, verdes y azules capturadas por el Phantom 4 Advanced, y la banda roja con mejora lineal para la opción de corte, para facilitar la distinción del huerto y el resto de los objetivos en la imagen y para obtener un mejor resultado en la detección de árboles frutales. El vuelo se realizó a una altura de 80 metros con una superposición entre bandas del 70% y en el mismo rango del 80%. Como resultado, el 97.98% de los árboles frutales se detectaron en plantas con coronas bien espaciadas y el 88.52% se identificaron en plantas con coronas juntas. El número de falsos positivos encontrados fue pequeño para todas las situaciones evaluadas, siendo estos falsos positivos las malas hierbas. Se concluye que la técnica es eficiente para contar plantas con coronas justas y espaciadas, y la detección se puede mejorar cuando hay un buen contraste entre lo que desea detectar y los objetivos que no son de interés.Muitas das vezes o produtor não sabe o número exato de árvores frutíferas em sua propriedade ou passa a desconhecer com o passar dos anos devido a morte de muitas plantas. Em função disso, a fim de evitar a necessidade de uma ida em campo para uma contagem manual, esta pesquisa teve como objetivo utilizar um algoritmo de correspondência de modelo em paralelo com o uso de um drone de baixo custo para avaliar sua eficiência na contagem automática de plantas de copas espaçadas e juntas. Foram utilizadas as bandas do vermelho, verde e azul capturadas pelo Phantom 4 Advanced, e a banda do vermelho com realce linear pela opção de corte, para facilitar a distinção do pomar e o restante dos alvos na imagem e obter um melhor resultado na detecção das árvores frutíferas. O voo foi realizado a uma altura de 80 metros com uma sobreposição entre faixas de 70 % e na mesma faixa de 80 %. Como resultado, 97,98 % das árvores frutíferas foram detectadas em plantas com copas bem espaçadas e 88,52 % foram identificadas em plantas com copas juntas. Os números de falsos positivos encontrados foram pequenos para todas as situações testadas, sendo esses falsos positivos plantas daninhas. Conclui-se que a técnica é eficiente para a contagem de plantas com copas juntas e espaçadas, podendo ser melhorada a detecção quando se tem um bom contraste entre o que se quer detectar e o os alvos que não são de interesse.Research, Society and Development2020-05-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/457610.33448/rsd-v9i7.4576Research, Society and Development; Vol. 9 No. 7; e668974576Research, Society and Development; Vol. 9 Núm. 7; e668974576Research, Society and Development; v. 9 n. 7; e6689745762525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/4576/4107Copyright (c) 2020 Bruno Henrique Tondato Arantes, Leticia Tondato Arantes, Janyne Moura Dos Santos, Matheus Vinicius Abadia Ventura, Luiz Fernando Gomesinfo:eu-repo/semantics/openAccessArantes, Bruno Henrique TondatoArantes, Leticia TondatoSantos, Janyne Moura dosVentura, Matheus Vinicius AbadiaGomes, Luiz Fernando2020-08-20T18:05:03Zoai:ojs.pkp.sfu.ca:article/4576Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:28:23.190792Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Efficiency analysis of the use of model matching algorithm for plant counting
Análisis de eficiencia del uso del algoritmo de comparación de modelos para el conteo de plantas
Análise de eficiência do uso de algoritmo de correspondência de modelo para contagem de plantas
title Efficiency analysis of the use of model matching algorithm for plant counting
spellingShingle Efficiency analysis of the use of model matching algorithm for plant counting
Efficiency analysis of the use of model matching algorithm for plant counting
Arantes, Bruno Henrique Tondato
Arboles frutales
Detección remota
Drone
Agricultura de precisión
Árvores frutíferas
Sensoriamento remoto
Drone
Agricultura de precisão.
Fruit trees
Remote sensing
Drone
Precision agriculture.
Arantes, Bruno Henrique Tondato
Arboles frutales
Detección remota
Drone
Agricultura de precisión
Árvores frutíferas
Sensoriamento remoto
Drone
Agricultura de precisão.
Fruit trees
Remote sensing
Drone
Precision agriculture.
title_short Efficiency analysis of the use of model matching algorithm for plant counting
title_full Efficiency analysis of the use of model matching algorithm for plant counting
title_fullStr Efficiency analysis of the use of model matching algorithm for plant counting
Efficiency analysis of the use of model matching algorithm for plant counting
title_full_unstemmed Efficiency analysis of the use of model matching algorithm for plant counting
Efficiency analysis of the use of model matching algorithm for plant counting
title_sort Efficiency analysis of the use of model matching algorithm for plant counting
author Arantes, Bruno Henrique Tondato
author_facet Arantes, Bruno Henrique Tondato
Arantes, Bruno Henrique Tondato
Arantes, Leticia Tondato
Santos, Janyne Moura dos
Ventura, Matheus Vinicius Abadia
Gomes, Luiz Fernando
Arantes, Leticia Tondato
Santos, Janyne Moura dos
Ventura, Matheus Vinicius Abadia
Gomes, Luiz Fernando
author_role author
author2 Arantes, Leticia Tondato
Santos, Janyne Moura dos
Ventura, Matheus Vinicius Abadia
Gomes, Luiz Fernando
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Arantes, Bruno Henrique Tondato
Arantes, Leticia Tondato
Santos, Janyne Moura dos
Ventura, Matheus Vinicius Abadia
Gomes, Luiz Fernando
dc.subject.por.fl_str_mv Arboles frutales
Detección remota
Drone
Agricultura de precisión
Árvores frutíferas
Sensoriamento remoto
Drone
Agricultura de precisão.
Fruit trees
Remote sensing
Drone
Precision agriculture.
topic Arboles frutales
Detección remota
Drone
Agricultura de precisión
Árvores frutíferas
Sensoriamento remoto
Drone
Agricultura de precisão.
Fruit trees
Remote sensing
Drone
Precision agriculture.
description Often the producer does not know the exact number of fruit trees on his property or is unaware over the years due to the death of many plants. As a result, in order to avoid the need for a field trip for manual counting, this research aimed to use a model matching algorithm in parallel with the use of a low-cost drone to assess its efficiency in automatic counting of spaced canopy plants and joints. The red, green and blue bands captured by the Phantom 4 Advanced were used, and the red band with linear enhancement for the cut option, to facilitate the distinction of the orchard and the rest of the targets in the image and to obtain a better result in the detection of fruit trees. The flight was performed at a height of 80 meters with an overlap between bands of 70% and in the same range of 80%. As a result, 97.98% of fruit trees were detected in plants with well-spaced crowns and 88.52% were identified in plants with crowns together. The numbers of false positives found were small for all situations tested, these false positives being weeds. It is concluded that the technique is efficient for counting plants with fair and spaced crowns, and detection can be improved when there is a good contrast between what you want to detect and the targets that are not of interest.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/4576
10.33448/rsd-v9i7.4576
url https://rsdjournal.org/index.php/rsd/article/view/4576
identifier_str_mv 10.33448/rsd-v9i7.4576
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/4576/4107
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 9 No. 7; e668974576
Research, Society and Development; Vol. 9 Núm. 7; e668974576
Research, Society and Development; v. 9 n. 7; e668974576
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1822178603981340672
dc.identifier.doi.none.fl_str_mv 10.33448/rsd-v9i7.4576