The COVID-19 pandemic in Brazil: an application of the k-means clustering method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
DOI: | 10.33448/rsd-v9i10.9059 |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/9059 |
Resumo: | COVID-19 is an infection caused by the SARS-CoV-2 coronavirus, its first records were in the Chinese city of Wuhan in December 2019, and was considered by the World Health Organization (WHO) to be a worldwide pandemic in March 2020. In Brazil, COVID-19 spread to 27 states (UFs). As a result, decision-making to decrease the speed of transmission was based on WHO recommendations, where the main one is social isolation. However, due to the heterogeneity of the population in each of the UFs, the pandemic spread differently. Thus, it is interesting to group UFs by similarity due to some characteristics, and thus, observe the measures to combat COVID-19 carried out in each of these groups. The aim of this study was to group UFs using cluster analysis using the non-hierarchical k-means method considering the epidemiological coefficients such as incidence, prevalence, and lethality. The data were obtained from the website of the Ministry of Health of Brazil and consisted of the variables number of cases and new and accumulated deaths in UFs, in addition to the population at risk. For cluster analysis, the database was divided into three chronological periods for the three coefficients under study. With the cluster analysis, it was possible to verify the stratification of UFs according to their similarities in relation to COVID-19. Thus, the stratification of incidence, prevalence, and lethality by UFs can present itself as an additional resource to signal which places and which measures should be adopted and where these measures were effective. |
id |
UNIFEI_e3fa964dff6e659f89901f5af3843c1e |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/9059 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
spelling |
The COVID-19 pandemic in Brazil: an application of the k-means clustering methodLa pandemia de COVID-19 en Brasil: una aplicación del método de agrupamiento de k-medias A pandemia da COVID-19 no Brasil: uma aplicação do método de clusterização k-meansClustersCOVID-19Coronavírus in BrazilSARS-CoV-2.ClústeresCOVID-19Coronavirus en BrasilSARS-CoV-2.ClustersCOVID-19Coronavírus no BrasilSARS-CoV-2.COVID-19 is an infection caused by the SARS-CoV-2 coronavirus, its first records were in the Chinese city of Wuhan in December 2019, and was considered by the World Health Organization (WHO) to be a worldwide pandemic in March 2020. In Brazil, COVID-19 spread to 27 states (UFs). As a result, decision-making to decrease the speed of transmission was based on WHO recommendations, where the main one is social isolation. However, due to the heterogeneity of the population in each of the UFs, the pandemic spread differently. Thus, it is interesting to group UFs by similarity due to some characteristics, and thus, observe the measures to combat COVID-19 carried out in each of these groups. The aim of this study was to group UFs using cluster analysis using the non-hierarchical k-means method considering the epidemiological coefficients such as incidence, prevalence, and lethality. The data were obtained from the website of the Ministry of Health of Brazil and consisted of the variables number of cases and new and accumulated deaths in UFs, in addition to the population at risk. For cluster analysis, the database was divided into three chronological periods for the three coefficients under study. With the cluster analysis, it was possible to verify the stratification of UFs according to their similarities in relation to COVID-19. Thus, the stratification of incidence, prevalence, and lethality by UFs can present itself as an additional resource to signal which places and which measures should be adopted and where these measures were effective.COVID-19 es una infección causada por el coronavirus SARS-CoV-2, sus primeros registros fueron en la ciudad china de Wuhan en diciembre de 2019, y fue considerada por la Organización Mundial de la Salud (OMS) como una pandemia mundial en marzo de 2020 En Brasil, COVID-19 se extendió a 27 estados (UF). Como resultado, la toma de decisiones para disminuir la velocidad de transmisión se basó en las recomendaciones de la OMS, donde la principal es el aislamiento social. Sin embargo, debido a la heterogeneidad de la población en cada una de las UF, la pandemia se propagó de manera diferente. Así, es interesante agrupar las UF por similitud debido a algunas características, y así observar las medidas de combate al COVID-19 llevadas a cabo en cada uno de estos grupos. El objetivo de este estudio fue agrupar UF mediante análisis de conglomerados mediante el método de k-medias no jerárquico considerando los coeficientes epidemiológicos como incidencia, prevalencia y letalidad. Los datos se obtuvieron del sitio web del Ministerio de Salud de Brasil y consistieron en las variables número de casos y muertes nuevas y acumuladas en UF, además de la población en riesgo. Para el análisis de conglomerados, la base de datos se dividió en tres períodos cronológicos para los tres coeficientes en estudio. Con el análisis de conglomerados se pudo verificar la estratificación de las UF según sus similitudes con respecto al COVID-19. Así, la estratificación de incidencia, prevalencia y letalidad por UF puede presentarse como un recurso adicional para señalar qué lugares y qué medidas deben adoptarse y dónde estas medidas fueron efectivas.A COVID-19 é uma infecção causada pelo coronavírus SARS-CoV-2, sendo que seus primeiros registros foram na cidade chinesa de Wuhan em dezembro de 2019, e foi considerada pela Organização Mundial da Saúde (OMS) uma pandemia mundial em março de 2020. No Brasil, a COVID-19 se espalhou atingindo as 27 unidades federativas (UFs). Com isso, as tomadas de decisões para diminuir a velocidade de transmissão foram baseadas nas recomendações da OMS, onde a principal é isolamento social. Entretanto, devido a heterogeneidade da população em cada uma das UFs, a pandemia se difundiu de forma distinta. Deste modo, é interessante fazer o agrupamento das UFs por similaridade devido algumas características, e assim, observar as medidas de combate a COVID-19 realizadas em cada um desse grupos. O objetivo deste estudo foi agrupar as UFs usando análise de cluster pelo método não-hierárquico k-means considerando os coeficientes epidemiológicos como incidência, prevalência e letalidade. Os dados foram obtidos do site do Ministério da Saúde do Brasil e foi constituído pelas variáveis número de casos e óbitos novos e acumulados nas UFs, além da população em risco. Para análise de cluster a base de dados foi dividida em três períodos cronológicos para os três coeficientes em estudo. Com a análise de cluster foi possível verificar a estratificação da UFs conforme suas similaridades em relação a COVID-19. Assim, a estratificação da incidência, prevalência e letalidade por UFs pode se apresentar como um recurso adicional para sinalizar quais locais e quais medidas deverão ser adotadas e onde essas medidas foram eficazes.Research, Society and Development2020-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/905910.33448/rsd-v9i10.9059Research, Society and Development; Vol. 9 No. 10; e5829109059Research, Society and Development; Vol. 9 Núm. 10; e5829109059Research, Society and Development; v. 9 n. 10; e58291090592525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/9059/7954Copyright (c) 2020 Henrique José de Paula Alves; Felipe Augusto Fernandes; Kelly Pereira de Lima; Ben Dêivide de Oliveira Batista ; Tales Jesus Fernandes https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAlves, Henrique José de Paula Fernandes, Felipe Augusto Lima, Kelly Pereira deBatista , Ben Dêivide de Oliveira Fernandes , Tales Jesus 2020-10-31T12:03:23Zoai:ojs.pkp.sfu.ca:article/9059Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:31:23.780025Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
The COVID-19 pandemic in Brazil: an application of the k-means clustering method La pandemia de COVID-19 en Brasil: una aplicación del método de agrupamiento de k-medias A pandemia da COVID-19 no Brasil: uma aplicação do método de clusterização k-means |
title |
The COVID-19 pandemic in Brazil: an application of the k-means clustering method |
spellingShingle |
The COVID-19 pandemic in Brazil: an application of the k-means clustering method The COVID-19 pandemic in Brazil: an application of the k-means clustering method Alves, Henrique José de Paula Clusters COVID-19 Coronavírus in Brazil SARS-CoV-2. Clústeres COVID-19 Coronavirus en Brasil SARS-CoV-2. Clusters COVID-19 Coronavírus no Brasil SARS-CoV-2. Alves, Henrique José de Paula Clusters COVID-19 Coronavírus in Brazil SARS-CoV-2. Clústeres COVID-19 Coronavirus en Brasil SARS-CoV-2. Clusters COVID-19 Coronavírus no Brasil SARS-CoV-2. |
title_short |
The COVID-19 pandemic in Brazil: an application of the k-means clustering method |
title_full |
The COVID-19 pandemic in Brazil: an application of the k-means clustering method |
title_fullStr |
The COVID-19 pandemic in Brazil: an application of the k-means clustering method The COVID-19 pandemic in Brazil: an application of the k-means clustering method |
title_full_unstemmed |
The COVID-19 pandemic in Brazil: an application of the k-means clustering method The COVID-19 pandemic in Brazil: an application of the k-means clustering method |
title_sort |
The COVID-19 pandemic in Brazil: an application of the k-means clustering method |
author |
Alves, Henrique José de Paula |
author_facet |
Alves, Henrique José de Paula Alves, Henrique José de Paula Fernandes, Felipe Augusto Lima, Kelly Pereira de Batista , Ben Dêivide de Oliveira Fernandes , Tales Jesus Fernandes, Felipe Augusto Lima, Kelly Pereira de Batista , Ben Dêivide de Oliveira Fernandes , Tales Jesus |
author_role |
author |
author2 |
Fernandes, Felipe Augusto Lima, Kelly Pereira de Batista , Ben Dêivide de Oliveira Fernandes , Tales Jesus |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Alves, Henrique José de Paula Fernandes, Felipe Augusto Lima, Kelly Pereira de Batista , Ben Dêivide de Oliveira Fernandes , Tales Jesus |
dc.subject.por.fl_str_mv |
Clusters COVID-19 Coronavírus in Brazil SARS-CoV-2. Clústeres COVID-19 Coronavirus en Brasil SARS-CoV-2. Clusters COVID-19 Coronavírus no Brasil SARS-CoV-2. |
topic |
Clusters COVID-19 Coronavírus in Brazil SARS-CoV-2. Clústeres COVID-19 Coronavirus en Brasil SARS-CoV-2. Clusters COVID-19 Coronavírus no Brasil SARS-CoV-2. |
description |
COVID-19 is an infection caused by the SARS-CoV-2 coronavirus, its first records were in the Chinese city of Wuhan in December 2019, and was considered by the World Health Organization (WHO) to be a worldwide pandemic in March 2020. In Brazil, COVID-19 spread to 27 states (UFs). As a result, decision-making to decrease the speed of transmission was based on WHO recommendations, where the main one is social isolation. However, due to the heterogeneity of the population in each of the UFs, the pandemic spread differently. Thus, it is interesting to group UFs by similarity due to some characteristics, and thus, observe the measures to combat COVID-19 carried out in each of these groups. The aim of this study was to group UFs using cluster analysis using the non-hierarchical k-means method considering the epidemiological coefficients such as incidence, prevalence, and lethality. The data were obtained from the website of the Ministry of Health of Brazil and consisted of the variables number of cases and new and accumulated deaths in UFs, in addition to the population at risk. For cluster analysis, the database was divided into three chronological periods for the three coefficients under study. With the cluster analysis, it was possible to verify the stratification of UFs according to their similarities in relation to COVID-19. Thus, the stratification of incidence, prevalence, and lethality by UFs can present itself as an additional resource to signal which places and which measures should be adopted and where these measures were effective. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/9059 10.33448/rsd-v9i10.9059 |
url |
https://rsdjournal.org/index.php/rsd/article/view/9059 |
identifier_str_mv |
10.33448/rsd-v9i10.9059 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/9059/7954 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 10; e5829109059 Research, Society and Development; Vol. 9 Núm. 10; e5829109059 Research, Society and Development; v. 9 n. 10; e5829109059 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1822178694564675584 |
dc.identifier.doi.none.fl_str_mv |
10.33448/rsd-v9i10.9059 |