Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical data

Detalhes bibliográficos
Autor(a) principal: Bragança, Rondinelli Gomes
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: por
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/11890
Resumo: Statistical models serve to describe the probabilistic behavior of phenomena of interest, allowing them to be analyzed, predicted and made relevant decisions. Linear regression models are widely used in several areas. These models have strong assumptions such as independence between errors that in general do not fit spatial data, since these data allow dependence on the error covariance structure. Therefore, linear regression models can be compared with spatial models. Spatial data can be divided into 3 types: dot pattern, area data and geostatistical data. This work aims to evaluate linear regression models initially and later to compare them to spatial models for geostatistical data through the exponential covariance function. Unknown parameters are found in these models and the inference adopted in this work is Bayesian for allowing the expert's initial belief to be incorporated into the modeling, increasing the amount of information evaluated and therefore improving the estimates. When adjusting the models under simulated data sets, it is possible to verify the ability of the adjustments to recover the true values of the parameters and select the true model. This article is the result of an interest in analyzing the adjustment of the linear regression model with a set of artificial data with spatial dependence and comparing this to the adjustment of the spatial model, more specifically, based on geostatistical data.
id UNIFEI_ed636ee4882f1a91696f3dd964d4b836
oai_identifier_str oai:ojs.pkp.sfu.ca:article/11890
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical dataInferencia Bayesiana aplicada al modelo de regresión lineal y al modelo espacial: Un enfoque sobre la estructura de covarianza entre datos geoestadísticosInferência Bayesiana aplicada em modelo de regressão linear e modelo espacial: Uma abordagem sobre a estrutura de covariância entre os dados geoestatísticosSpatial StatisticsGeostatisticsBayesian inferenceMarkov chains Monte CarloDICLinear Regression ModelMean square error.Estadística espacialGeoestadísticaInferencia bayesianaModelo de regresión linealMétodos de Monte Carlo a través de cadenas de MarkovDICError cuadrático medio.Estatística EspacialGeoestatísticaInferência BayesianaModelo de Regressão LinearMétodos de Monte Carlo via cadeias de MarkovDICErro médio quadrático.Statistical models serve to describe the probabilistic behavior of phenomena of interest, allowing them to be analyzed, predicted and made relevant decisions. Linear regression models are widely used in several areas. These models have strong assumptions such as independence between errors that in general do not fit spatial data, since these data allow dependence on the error covariance structure. Therefore, linear regression models can be compared with spatial models. Spatial data can be divided into 3 types: dot pattern, area data and geostatistical data. This work aims to evaluate linear regression models initially and later to compare them to spatial models for geostatistical data through the exponential covariance function. Unknown parameters are found in these models and the inference adopted in this work is Bayesian for allowing the expert's initial belief to be incorporated into the modeling, increasing the amount of information evaluated and therefore improving the estimates. When adjusting the models under simulated data sets, it is possible to verify the ability of the adjustments to recover the true values of the parameters and select the true model. This article is the result of an interest in analyzing the adjustment of the linear regression model with a set of artificial data with spatial dependence and comparing this to the adjustment of the spatial model, more specifically, based on geostatistical data.Los modelos estadísticos sirven para describir el comportamiento probabilístico de los fenómenos de interés, permitiendo analizarlos, predecirlos y tomar decisiones relevantes. Los modelos de regresión lineal se utilizan ampliamente en varias áreas. Estos modelos tienen fuertes supuestos como la independencia entre errores que en general no se ajustan a los datos espaciales, ya que estos datos permiten la dependencia de la estructura de covarianza del error. Por lo tanto, los modelos de regresión lineal se pueden comparar con modelos espaciales. Los datos espaciales se pueden dividir en 3 tipos: patrón de puntos, datos de área y datos geoestadísticos. Este trabajo tiene como objetivo evaluar inicialmente los modelos de regresión lineal y posteriormente compararlos con modelos espaciales para datos geoestadísticos mediante la función de covarianza exponencial. En estos modelos se encuentran parámetros desconocidos y la inferencia adoptada en este trabajo es bayesiana para permitir que la creencia inicial del experto se incorpore al modelado, aumentando la cantidad de información evaluada y por tanto mejorando las estimaciones. Al ajustar los modelos bajo conjuntos de datos simulados, es posible verificar la capacidad de los ajustes para recuperar los valores reales de los parámetros y seleccionar el modelo verdadero. Este artículo es el resultado de un interés en analizar el ajuste del modelo de regresión lineal con un conjunto de datos artificiales con dependencia espacial y compararlo con el ajuste del modelo espacial, más específicamente, basado en datos geoestadísticos.Modelos estatísticos servem para descrever o comportamento probabilístico de fenômenos de interesse permitindo analisá-los, prevê-los e tomar decisões pertinentes. Modelos de regressão linear são muito utilizados em diversas áreas. Esses modelos possuem suposições fortes como independência entre os erros que em geral não se ajustam a dados espaciais, já que estes dados permitem que haja dependência na estrutura de covariância dos erros. Portanto, modelos de regressão linear podem ser comparados com modelos espaciais. Dados espaciais podem ser divididos em 3 tipos: padrão de pontos, dados de área e dados geoestatísticos. Esse trabalho visa avaliar modelos de regressão linear inicialmente e posteriormente compará-los aos modelos espaciais para dados geoestatísticos através da função de covariância exponencial. Parâmetros desconhecidos são encontrados nesses modelos e a inferência adotada nesse trabalho é a Bayesiana por permitir que a crença inicial do especialista seja incorporada a modelagem, aumentando a quantidade de informação avaliada e melhorando portanto as estimativas. Ao ajustar os modelos sob conjuntos de dados simulados é possível verificar a capacidade dos ajustes recuperarem os verdadeiros valores dos parâmetros e selecionar o verdadeiro modelo. O presente artigo é resultado do interesse em analisar o ajuste do modelo de regressão linear com conjunto de dados artificiais com dependência espacial e comparar esse ao ajuste do modelo espacial, mais especificamente, a partir de dados geoestatísticos.Research, Society and Development2021-01-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1189010.33448/rsd-v10i1.11890Research, Society and Development; Vol. 10 No. 1; e31910111890Research, Society and Development; Vol. 10 Núm. 1; e31910111890Research, Society and Development; v. 10 n. 1; e319101118902525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/11890/10530Copyright (c) 2021 Rondinelli Gomes Bragançahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBragança, Rondinelli Gomes2021-02-20T21:19:23Zoai:ojs.pkp.sfu.ca:article/11890Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:33:36.309708Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical data
Inferencia Bayesiana aplicada al modelo de regresión lineal y al modelo espacial: Un enfoque sobre la estructura de covarianza entre datos geoestadísticos
Inferência Bayesiana aplicada em modelo de regressão linear e modelo espacial: Uma abordagem sobre a estrutura de covariância entre os dados geoestatísticos
title Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical data
spellingShingle Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical data
Bragança, Rondinelli Gomes
Spatial Statistics
Geostatistics
Bayesian inference
Markov chains Monte Carlo
DIC
Linear Regression Model
Mean square error.
Estadística espacial
Geoestadística
Inferencia bayesiana
Modelo de regresión lineal
Métodos de Monte Carlo a través de cadenas de Markov
DIC
Error cuadrático medio.
Estatística Espacial
Geoestatística
Inferência Bayesiana
Modelo de Regressão Linear
Métodos de Monte Carlo via cadeias de Markov
DIC
Erro médio quadrático.
title_short Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical data
title_full Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical data
title_fullStr Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical data
title_full_unstemmed Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical data
title_sort Bayesian inference applied to linear regression model and spatial model: An approach on the covariance structure between geostatistical data
author Bragança, Rondinelli Gomes
author_facet Bragança, Rondinelli Gomes
author_role author
dc.contributor.author.fl_str_mv Bragança, Rondinelli Gomes
dc.subject.por.fl_str_mv Spatial Statistics
Geostatistics
Bayesian inference
Markov chains Monte Carlo
DIC
Linear Regression Model
Mean square error.
Estadística espacial
Geoestadística
Inferencia bayesiana
Modelo de regresión lineal
Métodos de Monte Carlo a través de cadenas de Markov
DIC
Error cuadrático medio.
Estatística Espacial
Geoestatística
Inferência Bayesiana
Modelo de Regressão Linear
Métodos de Monte Carlo via cadeias de Markov
DIC
Erro médio quadrático.
topic Spatial Statistics
Geostatistics
Bayesian inference
Markov chains Monte Carlo
DIC
Linear Regression Model
Mean square error.
Estadística espacial
Geoestadística
Inferencia bayesiana
Modelo de regresión lineal
Métodos de Monte Carlo a través de cadenas de Markov
DIC
Error cuadrático medio.
Estatística Espacial
Geoestatística
Inferência Bayesiana
Modelo de Regressão Linear
Métodos de Monte Carlo via cadeias de Markov
DIC
Erro médio quadrático.
description Statistical models serve to describe the probabilistic behavior of phenomena of interest, allowing them to be analyzed, predicted and made relevant decisions. Linear regression models are widely used in several areas. These models have strong assumptions such as independence between errors that in general do not fit spatial data, since these data allow dependence on the error covariance structure. Therefore, linear regression models can be compared with spatial models. Spatial data can be divided into 3 types: dot pattern, area data and geostatistical data. This work aims to evaluate linear regression models initially and later to compare them to spatial models for geostatistical data through the exponential covariance function. Unknown parameters are found in these models and the inference adopted in this work is Bayesian for allowing the expert's initial belief to be incorporated into the modeling, increasing the amount of information evaluated and therefore improving the estimates. When adjusting the models under simulated data sets, it is possible to verify the ability of the adjustments to recover the true values of the parameters and select the true model. This article is the result of an interest in analyzing the adjustment of the linear regression model with a set of artificial data with spatial dependence and comparing this to the adjustment of the spatial model, more specifically, based on geostatistical data.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/11890
10.33448/rsd-v10i1.11890
url https://rsdjournal.org/index.php/rsd/article/view/11890
identifier_str_mv 10.33448/rsd-v10i1.11890
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/11890/10530
dc.rights.driver.fl_str_mv Copyright (c) 2021 Rondinelli Gomes Bragança
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Rondinelli Gomes Bragança
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 10 No. 1; e31910111890
Research, Society and Development; Vol. 10 Núm. 1; e31910111890
Research, Society and Development; v. 10 n. 1; e31910111890
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052668598812672