Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/24506 |
Resumo: | The investigation of soils shear strength is necessary in many Geotechnical Engineering applications, e.g. foundations, slope stability and retaining walls design. It is usually conducted by means of field and/or laboratory standard tests. In both cases, they are time-consuming and require specialized personnel to be performed. Several studies are found in the literature in which artificial intelligence tools are used as an alternative to those tests. This paper presents a systematic mapping review on this subject, in which algorithms types and geotechnical parameters needed to estimate soils shear strength are identified, based on data extracted from the literature. It was possible to list 17 techniques applied to different soil types. The results from these studies have been in good agreement with data from real laboratory and/or field tests. This demonstrates the potential of application of artificial intelligence to estimate soils shear strength. |
id |
UNIFEI_f7616e0612a84d59fb97bd47e44e3f84 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/24506 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mappingAplicaciones de la inteligencia artificial en la determinación de los parámetros de resistencia al cizallamiento del suelo: un mapeo sistemático de la literaturaAplicações de inteligência artificial na determinação de parâmetros de resistência ao cisalhamento do solo: um mapeamento sistemático da literatura Systematic mappingShear strengthArtificial intelligence.Mapeamento sistemáticoResistência ao cisalhamentoInteligência artificial.Mapeo sistemáticoResistencia al corteInteligencia artificial.The investigation of soils shear strength is necessary in many Geotechnical Engineering applications, e.g. foundations, slope stability and retaining walls design. It is usually conducted by means of field and/or laboratory standard tests. In both cases, they are time-consuming and require specialized personnel to be performed. Several studies are found in the literature in which artificial intelligence tools are used as an alternative to those tests. This paper presents a systematic mapping review on this subject, in which algorithms types and geotechnical parameters needed to estimate soils shear strength are identified, based on data extracted from the literature. It was possible to list 17 techniques applied to different soil types. The results from these studies have been in good agreement with data from real laboratory and/or field tests. This demonstrates the potential of application of artificial intelligence to estimate soils shear strength.La investigación de la resistencia al corte de los suelos es una tarea común en varios proyectos de ingeniería geotécnica, por ejemplo, cimentaciones, estabilidad de taludes y estructuras de contención. Por lo general, se lleva a cabo mediante pruebas estandarizadas de campo y / o laboratorio. En ambos casos, es una tarea que demanda tiempo y tiene un costo asociado. En la literatura se pueden encontrar varios estudios en los que se utilizan herramientas de inteligencia artificial como alternativa a la realización de estas pruebas. Este artículo presenta un mapeo sistemático de la literatura sobre este tema. Los tipos de algoritmos y parámetros geotécnicos utilizados para estimar la resistencia al corte del suelo se identificaron con base en datos extraídos de la literatura. Fue posible enumerar 17 técnicas aplicadas a diferentes tipos de suelo. Los resultados de estos estudios están de acuerdo con los datos obtenidos a través de pruebas geotécnicas, de laboratorio y de campo reales. Esto demuestra el potencial de usar inteligencia artificial para estimar la resistencia al corte de los suelos.A investigação da resistência ao cisalhamento dos solos é tarefa corriqueira em diversos projetos de Engenharia Geotécnica, e.g. fundações, estabilidade de taludes e estruturas de contenção. Ela é usualmente conduzida por meio de ensaios padronizados de campo e/ou laboratório. Nos dois casos, trata-se de uma tarefa que demanda tempo e possui um custo associado a ela. Diversos estudos podem ser encontrados na literatura em que ferramentas de inteligência artificial são usadas como alternativa à execução desses ensaios. Este artigo apresenta um mapeamento sistemático da literatura sobre esse assunto. Os tipos de algoritmo e os parâmetros geotécnicos empregados para estimar a resistência ao cisalhamento do solo foram identificados com base nos dados extraídos da literatura. Foi possível listar 17 técnicas aplicadas a diferentes tipos de solo. Os resultados desses estudos encontram-se de acordo com dados obtidos por meio de ensaios geotécnicos reais, de laboratório e de campo. Isso demonstra o potencial de uso de inteligência artificial para estimar a resistência ao cisalhamento dos solos.Research, Society and Development2022-01-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2450610.33448/rsd-v11i1.24506Research, Society and Development; Vol. 11 No. 1; e27711124506Research, Society and Development; Vol. 11 Núm. 1; e27711124506Research, Society and Development; v. 11 n. 1; e277111245062525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/24506/21877Copyright (c) 2022 Matheus Gomes Carvalho; Eduardo Matthews do Rego Barreto; José Ailton da Costa Ferreira; Fagner Alexandre Nunes de França; Osvaldo de Freitas Netohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCarvalho, Matheus Gomes Barreto, Eduardo Matthews do RegoFerreira, José Ailton da CostaFrança, Fagner Alexandre Nunes deFreitas Neto, Osvaldo de2022-01-16T18:08:18Zoai:ojs.pkp.sfu.ca:article/24506Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:43:02.155618Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping Aplicaciones de la inteligencia artificial en la determinación de los parámetros de resistencia al cizallamiento del suelo: un mapeo sistemático de la literatura Aplicações de inteligência artificial na determinação de parâmetros de resistência ao cisalhamento do solo: um mapeamento sistemático da literatura |
title |
Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping |
spellingShingle |
Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping Carvalho, Matheus Gomes Systematic mapping Shear strength Artificial intelligence. Mapeamento sistemático Resistência ao cisalhamento Inteligência artificial. Mapeo sistemático Resistencia al corte Inteligencia artificial. |
title_short |
Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping |
title_full |
Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping |
title_fullStr |
Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping |
title_full_unstemmed |
Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping |
title_sort |
Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping |
author |
Carvalho, Matheus Gomes |
author_facet |
Carvalho, Matheus Gomes Barreto, Eduardo Matthews do Rego Ferreira, José Ailton da Costa França, Fagner Alexandre Nunes de Freitas Neto, Osvaldo de |
author_role |
author |
author2 |
Barreto, Eduardo Matthews do Rego Ferreira, José Ailton da Costa França, Fagner Alexandre Nunes de Freitas Neto, Osvaldo de |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Carvalho, Matheus Gomes Barreto, Eduardo Matthews do Rego Ferreira, José Ailton da Costa França, Fagner Alexandre Nunes de Freitas Neto, Osvaldo de |
dc.subject.por.fl_str_mv |
Systematic mapping Shear strength Artificial intelligence. Mapeamento sistemático Resistência ao cisalhamento Inteligência artificial. Mapeo sistemático Resistencia al corte Inteligencia artificial. |
topic |
Systematic mapping Shear strength Artificial intelligence. Mapeamento sistemático Resistência ao cisalhamento Inteligência artificial. Mapeo sistemático Resistencia al corte Inteligencia artificial. |
description |
The investigation of soils shear strength is necessary in many Geotechnical Engineering applications, e.g. foundations, slope stability and retaining walls design. It is usually conducted by means of field and/or laboratory standard tests. In both cases, they are time-consuming and require specialized personnel to be performed. Several studies are found in the literature in which artificial intelligence tools are used as an alternative to those tests. This paper presents a systematic mapping review on this subject, in which algorithms types and geotechnical parameters needed to estimate soils shear strength are identified, based on data extracted from the literature. It was possible to list 17 techniques applied to different soil types. The results from these studies have been in good agreement with data from real laboratory and/or field tests. This demonstrates the potential of application of artificial intelligence to estimate soils shear strength. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-06 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/24506 10.33448/rsd-v11i1.24506 |
url |
https://rsdjournal.org/index.php/rsd/article/view/24506 |
identifier_str_mv |
10.33448/rsd-v11i1.24506 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/24506/21877 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 1; e27711124506 Research, Society and Development; Vol. 11 Núm. 1; e27711124506 Research, Society and Development; v. 11 n. 1; e27711124506 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052760742428672 |