An in-depth assessment of convolutional neural networks for rail surface defect detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/30252 |
Resumo: | The consistent monitoring of rails is based on correctly identifying defects to support corrective measures. Recently, convolutional neural networks (CNN), a deep learning method, have been providing outstanding results for the automatic detection of defects. However, several aspects of CNN-based approaches such as network architecture, transfer learning and processing time remains not fully understood. In this work, we performed an in-depth assessment of ten widely used CNN models with the objective of finding the one with the best performance in identifying defects in rail surface images. The classification results are promising, reaching an average accuracy of 83.7% on detection of mild defects and squat. The Inceptionv3 network provided the best results by correctly identifying 92% of images with severe squat defects. |
id |
UNIFEI_f87a284912db1184d9680cbef1eb135f |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/30252 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
An in-depth assessment of convolutional neural networks for rail surface defect detectionUna evaluación en profundidad de las redes neuronales convolucionales para la detección de defectos en la superficie del carrilUma avaliação abrangente de rede neural convolucional para detecção de defeitos na superfície ferroviáriaInspeção ferroviáriaSquatCNN.Inspección ferroviariaOkupaCNN.Rail inspectionSquatCNN.The consistent monitoring of rails is based on correctly identifying defects to support corrective measures. Recently, convolutional neural networks (CNN), a deep learning method, have been providing outstanding results for the automatic detection of defects. However, several aspects of CNN-based approaches such as network architecture, transfer learning and processing time remains not fully understood. In this work, we performed an in-depth assessment of ten widely used CNN models with the objective of finding the one with the best performance in identifying defects in rail surface images. The classification results are promising, reaching an average accuracy of 83.7% on detection of mild defects and squat. The Inceptionv3 network provided the best results by correctly identifying 92% of images with severe squat defects.El monitoreo consistente de los rieles se basa en identificar correctamente los defectos para respaldar las medidas correctivas. Recientemente, las redes neuronales convolucionales (CNN), un método de aprendizaje profundo, han proporcionado resultados sobresalientes para la detección automática de defectos. Sin embargo, varios aspectos de los enfoques basados en CNN, como la arquitectura de la red, el aprendizaje de la transferencia y el tiempo de procesamiento, aún no se comprenden por completo. En este trabajo, realizamos una evaluación en profundidad de diez modelos CNN ampliamente utilizados con el objetivo de encontrar el que tenga el mejor rendimiento en la identificación de defectos en las imágenes de la superficie del carril. Los resultados de la clasificación son prometedores, alcanzando una precisión media del 83,7 % en la detección de defectos leves y achaparrados. La red Inceptionv3 brindó los mejores resultados al identificar correctamente el 92 % de las imágenes con graves defectos de posición en cuclillas.O monitoramento consistente dos trilhos baseia-se na identificação correta dos defeitos para apoiar as medidas corretivas. Recentemente, as redes neurais convolucionais (CNN), um método de aprendizado profundo, vêm apresentando excelentes resultados para a detecção automática de defeitos. No entanto, vários aspectos das abordagens baseadas em CNN, como arquitetura de rede, aprendizado de transferência e tempo de processamento, ainda não são totalmente compreendidos. Neste trabalho, realizamos uma avaliação aprofundada de dez modelos CNN amplamente utilizados, com o objetivo de encontrar aquele com melhor desempenho em identificar defeitos em imagens de superfície do trilho. Os resultados da classificação são promissores, atingindo uma acurácia média de 83,7% na detecção de defeitos leves e agachamento. A rede Inceptionv3 forneceu os melhores resultados ao identificar corretamente 92% das imagens com defeitos graves de squat.Research, Society and Development2022-06-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3025210.33448/rsd-v11i8.30252Research, Society and Development; Vol. 11 No. 8; e12211830252Research, Society and Development; Vol. 11 Núm. 8; e12211830252Research, Society and Development; v. 11 n. 8; e122118302522525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/30252/26331Copyright (c) 2022 Rebeca Alves da Silva Lemos Passos; Matheus Pinheiro Ferreira; Ben-Hur de Albuquerque e Silva; Luiz Antonio Silveira Lopes; Hugo Ribeiro; Romero Pereira dos Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessPassos, Rebeca Alves da Silva LemosFerreira, Matheus PinheiroSilva, Ben-Hur de Albuquerque e Lopes, Luiz Antonio Silveira Ribeiro, Hugo Santos, Romero Pereira dos 2022-07-01T13:34:06Zoai:ojs.pkp.sfu.ca:article/30252Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:47:04.292503Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
An in-depth assessment of convolutional neural networks for rail surface defect detection Una evaluación en profundidad de las redes neuronales convolucionales para la detección de defectos en la superficie del carril Uma avaliação abrangente de rede neural convolucional para detecção de defeitos na superfície ferroviária |
title |
An in-depth assessment of convolutional neural networks for rail surface defect detection |
spellingShingle |
An in-depth assessment of convolutional neural networks for rail surface defect detection Passos, Rebeca Alves da Silva Lemos Inspeção ferroviária Squat CNN. Inspección ferroviaria Okupa CNN. Rail inspection Squat CNN. |
title_short |
An in-depth assessment of convolutional neural networks for rail surface defect detection |
title_full |
An in-depth assessment of convolutional neural networks for rail surface defect detection |
title_fullStr |
An in-depth assessment of convolutional neural networks for rail surface defect detection |
title_full_unstemmed |
An in-depth assessment of convolutional neural networks for rail surface defect detection |
title_sort |
An in-depth assessment of convolutional neural networks for rail surface defect detection |
author |
Passos, Rebeca Alves da Silva Lemos |
author_facet |
Passos, Rebeca Alves da Silva Lemos Ferreira, Matheus Pinheiro Silva, Ben-Hur de Albuquerque e Lopes, Luiz Antonio Silveira Ribeiro, Hugo Santos, Romero Pereira dos |
author_role |
author |
author2 |
Ferreira, Matheus Pinheiro Silva, Ben-Hur de Albuquerque e Lopes, Luiz Antonio Silveira Ribeiro, Hugo Santos, Romero Pereira dos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Passos, Rebeca Alves da Silva Lemos Ferreira, Matheus Pinheiro Silva, Ben-Hur de Albuquerque e Lopes, Luiz Antonio Silveira Ribeiro, Hugo Santos, Romero Pereira dos |
dc.subject.por.fl_str_mv |
Inspeção ferroviária Squat CNN. Inspección ferroviaria Okupa CNN. Rail inspection Squat CNN. |
topic |
Inspeção ferroviária Squat CNN. Inspección ferroviaria Okupa CNN. Rail inspection Squat CNN. |
description |
The consistent monitoring of rails is based on correctly identifying defects to support corrective measures. Recently, convolutional neural networks (CNN), a deep learning method, have been providing outstanding results for the automatic detection of defects. However, several aspects of CNN-based approaches such as network architecture, transfer learning and processing time remains not fully understood. In this work, we performed an in-depth assessment of ten widely used CNN models with the objective of finding the one with the best performance in identifying defects in rail surface images. The classification results are promising, reaching an average accuracy of 83.7% on detection of mild defects and squat. The Inceptionv3 network provided the best results by correctly identifying 92% of images with severe squat defects. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-12 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/30252 10.33448/rsd-v11i8.30252 |
url |
https://rsdjournal.org/index.php/rsd/article/view/30252 |
identifier_str_mv |
10.33448/rsd-v11i8.30252 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/30252/26331 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 8; e12211830252 Research, Society and Development; Vol. 11 Núm. 8; e12211830252 Research, Society and Development; v. 11 n. 8; e12211830252 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052714015784960 |