An in-depth assessment of convolutional neural networks for rail surface defect detection

Detalhes bibliográficos
Autor(a) principal: Passos, Rebeca Alves da Silva Lemos
Data de Publicação: 2022
Outros Autores: Ferreira, Matheus Pinheiro, Silva, Ben-Hur de Albuquerque e, Lopes, Luiz Antonio Silveira, Ribeiro, Hugo, Santos, Romero Pereira dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/30252
Resumo: The consistent monitoring of rails is based on correctly identifying defects to support corrective measures. Recently, convolutional neural networks (CNN), a deep learning method, have been providing outstanding results for the automatic detection of defects. However, several aspects of CNN-based approaches such as network architecture, transfer learning and processing time remains not fully understood. In this work, we performed an in-depth assessment of ten widely used CNN models with the objective of finding the one with the best performance in identifying defects in rail surface images. The classification results are promising, reaching an average accuracy of 83.7% on detection of mild defects and squat. The Inceptionv3 network provided the best results by correctly identifying 92% of images with severe squat defects.
id UNIFEI_f87a284912db1184d9680cbef1eb135f
oai_identifier_str oai:ojs.pkp.sfu.ca:article/30252
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling An in-depth assessment of convolutional neural networks for rail surface defect detectionUna evaluación en profundidad de las redes neuronales convolucionales para la detección de defectos en la superficie del carrilUma avaliação abrangente de rede neural convolucional para detecção de defeitos na superfície ferroviáriaInspeção ferroviáriaSquatCNN.Inspección ferroviariaOkupaCNN.Rail inspectionSquatCNN.The consistent monitoring of rails is based on correctly identifying defects to support corrective measures. Recently, convolutional neural networks (CNN), a deep learning method, have been providing outstanding results for the automatic detection of defects. However, several aspects of CNN-based approaches such as network architecture, transfer learning and processing time remains not fully understood. In this work, we performed an in-depth assessment of ten widely used CNN models with the objective of finding the one with the best performance in identifying defects in rail surface images. The classification results are promising, reaching an average accuracy of 83.7% on detection of mild defects and squat. The Inceptionv3 network provided the best results by correctly identifying 92% of images with severe squat defects.El monitoreo consistente de los rieles se basa en identificar correctamente los defectos para respaldar las medidas correctivas. Recientemente, las redes neuronales convolucionales (CNN), un método de aprendizaje profundo, han proporcionado resultados sobresalientes para la detección automática de defectos. Sin embargo, varios aspectos de los enfoques basados en CNN, como la arquitectura de la red, el aprendizaje de la transferencia y el tiempo de procesamiento, aún no se comprenden por completo. En este trabajo, realizamos una evaluación en profundidad de diez modelos CNN ampliamente utilizados con el objetivo de encontrar el que tenga el mejor rendimiento en la identificación de defectos en las imágenes de la superficie del carril. Los resultados de la clasificación son prometedores, alcanzando una precisión media del 83,7 % en la detección de defectos leves y achaparrados. La red Inceptionv3 brindó los mejores resultados al identificar correctamente el 92 % de las imágenes con graves defectos de posición en cuclillas.O monitoramento consistente dos trilhos baseia-se na identificação correta dos defeitos para apoiar as medidas corretivas. Recentemente, as redes neurais convolucionais (CNN), um método de aprendizado profundo, vêm apresentando excelentes resultados para a detecção automática de defeitos. No entanto, vários aspectos das abordagens baseadas em CNN, como arquitetura de rede, aprendizado de transferência e tempo de processamento, ainda não são totalmente compreendidos. Neste trabalho, realizamos uma avaliação aprofundada de dez modelos CNN amplamente utilizados, com o objetivo de encontrar aquele com melhor desempenho em identificar defeitos em imagens de superfície do trilho. Os resultados da classificação são promissores, atingindo uma acurácia média de 83,7% na detecção de defeitos leves e agachamento. A rede Inceptionv3 forneceu os melhores resultados ao identificar corretamente 92% das imagens com defeitos graves de squat.Research, Society and Development2022-06-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3025210.33448/rsd-v11i8.30252Research, Society and Development; Vol. 11 No. 8; e12211830252Research, Society and Development; Vol. 11 Núm. 8; e12211830252Research, Society and Development; v. 11 n. 8; e122118302522525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/30252/26331Copyright (c) 2022 Rebeca Alves da Silva Lemos Passos; Matheus Pinheiro Ferreira; Ben-Hur de Albuquerque e Silva; Luiz Antonio Silveira Lopes; Hugo Ribeiro; Romero Pereira dos Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessPassos, Rebeca Alves da Silva LemosFerreira, Matheus PinheiroSilva, Ben-Hur de Albuquerque e Lopes, Luiz Antonio Silveira Ribeiro, Hugo Santos, Romero Pereira dos 2022-07-01T13:34:06Zoai:ojs.pkp.sfu.ca:article/30252Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:47:04.292503Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv An in-depth assessment of convolutional neural networks for rail surface defect detection
Una evaluación en profundidad de las redes neuronales convolucionales para la detección de defectos en la superficie del carril
Uma avaliação abrangente de rede neural convolucional para detecção de defeitos na superfície ferroviária
title An in-depth assessment of convolutional neural networks for rail surface defect detection
spellingShingle An in-depth assessment of convolutional neural networks for rail surface defect detection
Passos, Rebeca Alves da Silva Lemos
Inspeção ferroviária
Squat
CNN.
Inspección ferroviaria
Okupa
CNN.
Rail inspection
Squat
CNN.
title_short An in-depth assessment of convolutional neural networks for rail surface defect detection
title_full An in-depth assessment of convolutional neural networks for rail surface defect detection
title_fullStr An in-depth assessment of convolutional neural networks for rail surface defect detection
title_full_unstemmed An in-depth assessment of convolutional neural networks for rail surface defect detection
title_sort An in-depth assessment of convolutional neural networks for rail surface defect detection
author Passos, Rebeca Alves da Silva Lemos
author_facet Passos, Rebeca Alves da Silva Lemos
Ferreira, Matheus Pinheiro
Silva, Ben-Hur de Albuquerque e
Lopes, Luiz Antonio Silveira
Ribeiro, Hugo
Santos, Romero Pereira dos
author_role author
author2 Ferreira, Matheus Pinheiro
Silva, Ben-Hur de Albuquerque e
Lopes, Luiz Antonio Silveira
Ribeiro, Hugo
Santos, Romero Pereira dos
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Passos, Rebeca Alves da Silva Lemos
Ferreira, Matheus Pinheiro
Silva, Ben-Hur de Albuquerque e
Lopes, Luiz Antonio Silveira
Ribeiro, Hugo
Santos, Romero Pereira dos
dc.subject.por.fl_str_mv Inspeção ferroviária
Squat
CNN.
Inspección ferroviaria
Okupa
CNN.
Rail inspection
Squat
CNN.
topic Inspeção ferroviária
Squat
CNN.
Inspección ferroviaria
Okupa
CNN.
Rail inspection
Squat
CNN.
description The consistent monitoring of rails is based on correctly identifying defects to support corrective measures. Recently, convolutional neural networks (CNN), a deep learning method, have been providing outstanding results for the automatic detection of defects. However, several aspects of CNN-based approaches such as network architecture, transfer learning and processing time remains not fully understood. In this work, we performed an in-depth assessment of ten widely used CNN models with the objective of finding the one with the best performance in identifying defects in rail surface images. The classification results are promising, reaching an average accuracy of 83.7% on detection of mild defects and squat. The Inceptionv3 network provided the best results by correctly identifying 92% of images with severe squat defects.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-12
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/30252
10.33448/rsd-v11i8.30252
url https://rsdjournal.org/index.php/rsd/article/view/30252
identifier_str_mv 10.33448/rsd-v11i8.30252
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/30252/26331
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 11 No. 8; e12211830252
Research, Society and Development; Vol. 11 Núm. 8; e12211830252
Research, Society and Development; v. 11 n. 8; e12211830252
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052714015784960