Modelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico

Detalhes bibliográficos
Autor(a) principal: Pacheco, Jussiano Regis
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNIJUI
Texto Completo: http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5524
Resumo: A computação em nuvem se apresenta como possibilidade eficiente de maximizar e flexibilizar os recursos computacionais das empresas Infrastructure as Service (IaaS) é um modelo de computação em nuvem focado na contratação de máquinas virtuais com o intuito de oferecer o uso de recursos computacionais de forma otimizada. Entretanto, a diversidade de planos ofertados, assim como as estratégias de precificação adotadas pelos provedores torna complexa a tomada de decisão. Neste sentido, com o objetivo de compreender a composição dos planos de precificação, esta dissertação desenvolveu modelos ecnométricos para estimular os preços dos recursos computacionais utilizados em planos de provedores de computação em nuvem da modalidade IaaS por meio de método hedônico. Para isso, foram analisados planos de computação em nuvem ofertados por três dos principais provedores Amazon Web Service, Google Cloud Platform e Microsolft Windos Azure. Os dados obtidos referem-se ao valor mensal, características qualitativas (como CPU, armazenamento e memória). Utilizou-se para estimular os coeficientes a análise de regressão Não Linear. Os testes estatísticos mostram que os modelos são eficazes. Os resultados permitiram identificar determinadas estratégias de precificação aplicadas. Os planos da Google Cloud apresentam um padrão semelhante de precificação dos recursos computacionais em relação a localização geográfica. Também e o provedor com o preço médio mais baixo pelo conjunto de recursos computacionais. Já a Azure utiliza de estratégias especificas de preços em cada um dos servidores, os preços praticados não apresentam relação com a localização geográfica. É também a Azure que possui o valor médio mais alto pelo conjunto CPU x Memória (1x3,75GB). Já na Amazon observou-se que a localização geográfica do servidor tem influência sobre os planos de precificação. Este também é o provedor que possui o maior valor entre s planos com sistemas operacionais Windows, preço 76% maior que a Azure. Em uma análise comparativa, os planos propostos pela Google mostraram ser mais vantajosos em situações com baixa e média quantidade de Armazenamento. A Amazon apresentou as melhores opções para o planos compostos por alta quantidade de armazenamento e com sistema operacional Linux e Windows, este último somente em algumas regiões. A análise estatística indica que o modelo proposto permite compreender as estratégias de preço praticadas pelos provedores de Computação em Nuvem.
id UNIJ_594df64335191df82c9faa8900bd5b28
oai_identifier_str oai:bibliodigital.unijui.edu.br:123456789/5524
network_acronym_str UNIJ
network_name_str Repositório Institucional da UNIJUI
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisModelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico2018-12-0520182018-12-05T23:02:07Z2018-12-05T23:02:07ZA computação em nuvem se apresenta como possibilidade eficiente de maximizar e flexibilizar os recursos computacionais das empresas Infrastructure as Service (IaaS) é um modelo de computação em nuvem focado na contratação de máquinas virtuais com o intuito de oferecer o uso de recursos computacionais de forma otimizada. Entretanto, a diversidade de planos ofertados, assim como as estratégias de precificação adotadas pelos provedores torna complexa a tomada de decisão. Neste sentido, com o objetivo de compreender a composição dos planos de precificação, esta dissertação desenvolveu modelos ecnométricos para estimular os preços dos recursos computacionais utilizados em planos de provedores de computação em nuvem da modalidade IaaS por meio de método hedônico. Para isso, foram analisados planos de computação em nuvem ofertados por três dos principais provedores Amazon Web Service, Google Cloud Platform e Microsolft Windos Azure. Os dados obtidos referem-se ao valor mensal, características qualitativas (como CPU, armazenamento e memória). Utilizou-se para estimular os coeficientes a análise de regressão Não Linear. Os testes estatísticos mostram que os modelos são eficazes. Os resultados permitiram identificar determinadas estratégias de precificação aplicadas. Os planos da Google Cloud apresentam um padrão semelhante de precificação dos recursos computacionais em relação a localização geográfica. Também e o provedor com o preço médio mais baixo pelo conjunto de recursos computacionais. Já a Azure utiliza de estratégias especificas de preços em cada um dos servidores, os preços praticados não apresentam relação com a localização geográfica. É também a Azure que possui o valor médio mais alto pelo conjunto CPU x Memória (1x3,75GB). Já na Amazon observou-se que a localização geográfica do servidor tem influência sobre os planos de precificação. Este também é o provedor que possui o maior valor entre s planos com sistemas operacionais Windows, preço 76% maior que a Azure. Em uma análise comparativa, os planos propostos pela Google mostraram ser mais vantajosos em situações com baixa e média quantidade de Armazenamento. A Amazon apresentou as melhores opções para o planos compostos por alta quantidade de armazenamento e com sistema operacional Linux e Windows, este último somente em algumas regiões. A análise estatística indica que o modelo proposto permite compreender as estratégias de preço praticadas pelos provedores de Computação em Nuvem.95 f.Ciências exatas e da terra.Modelagem matemática.Computação em nuvem.Infraestrutura como um serviço.regressão múltipla.Modelo de precificação.Modelo hedônico.http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5524DMD_hdl_123456789/5524Pacheco, Jussiano Regisporreponame:Repositório Institucional da UNIJUIinstname:Universidade Regional do Noroeste do Estado do Rio Grande do Sulinstacron:UNIJUIinfo:eu-repo/semantics/openAccessJussiano%20Regis%20Pacheco.pdfhttp://bibliodigital.unijui.edu.br:8080/xmlui/bitstream/123456789/5524/1/Jussiano%20Regis%20Pacheco.pdfapplication/pdf29200366http://bibliodigital.unijui.edu.br:8080/xmlui/bitstream/123456789/5524/1/Jussiano%20Regis%20Pacheco.pdfc2c50ba08ed5bf31fed8af064ed02d9fMD5123456789_5524_12019-01-21T12:46:02Zmail@mail.com -
dc.title.none.fl_str_mv Modelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico
title Modelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico
spellingShingle Modelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico
Pacheco, Jussiano Regis
Ciências exatas e da terra.
Modelagem matemática.
Computação em nuvem.
Infraestrutura como um serviço.
regressão múltipla.
Modelo de precificação.
Modelo hedônico.
title_short Modelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico
title_full Modelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico
title_fullStr Modelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico
title_full_unstemmed Modelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico
title_sort Modelagem matemática da precificação dos recursos computacionais utilizados em planos de provedores de computação em uvens usando o método hedônico
author Pacheco, Jussiano Regis
author_facet Pacheco, Jussiano Regis
author_role author
dc.contributor.author.fl_str_mv Pacheco, Jussiano Regis
dc.subject.por.fl_str_mv Ciências exatas e da terra.
Modelagem matemática.
Computação em nuvem.
Infraestrutura como um serviço.
regressão múltipla.
Modelo de precificação.
Modelo hedônico.
topic Ciências exatas e da terra.
Modelagem matemática.
Computação em nuvem.
Infraestrutura como um serviço.
regressão múltipla.
Modelo de precificação.
Modelo hedônico.
dc.description.abstract.none.fl_txt_mv A computação em nuvem se apresenta como possibilidade eficiente de maximizar e flexibilizar os recursos computacionais das empresas Infrastructure as Service (IaaS) é um modelo de computação em nuvem focado na contratação de máquinas virtuais com o intuito de oferecer o uso de recursos computacionais de forma otimizada. Entretanto, a diversidade de planos ofertados, assim como as estratégias de precificação adotadas pelos provedores torna complexa a tomada de decisão. Neste sentido, com o objetivo de compreender a composição dos planos de precificação, esta dissertação desenvolveu modelos ecnométricos para estimular os preços dos recursos computacionais utilizados em planos de provedores de computação em nuvem da modalidade IaaS por meio de método hedônico. Para isso, foram analisados planos de computação em nuvem ofertados por três dos principais provedores Amazon Web Service, Google Cloud Platform e Microsolft Windos Azure. Os dados obtidos referem-se ao valor mensal, características qualitativas (como CPU, armazenamento e memória). Utilizou-se para estimular os coeficientes a análise de regressão Não Linear. Os testes estatísticos mostram que os modelos são eficazes. Os resultados permitiram identificar determinadas estratégias de precificação aplicadas. Os planos da Google Cloud apresentam um padrão semelhante de precificação dos recursos computacionais em relação a localização geográfica. Também e o provedor com o preço médio mais baixo pelo conjunto de recursos computacionais. Já a Azure utiliza de estratégias especificas de preços em cada um dos servidores, os preços praticados não apresentam relação com a localização geográfica. É também a Azure que possui o valor médio mais alto pelo conjunto CPU x Memória (1x3,75GB). Já na Amazon observou-se que a localização geográfica do servidor tem influência sobre os planos de precificação. Este também é o provedor que possui o maior valor entre s planos com sistemas operacionais Windows, preço 76% maior que a Azure. Em uma análise comparativa, os planos propostos pela Google mostraram ser mais vantajosos em situações com baixa e média quantidade de Armazenamento. A Amazon apresentou as melhores opções para o planos compostos por alta quantidade de armazenamento e com sistema operacional Linux e Windows, este último somente em algumas regiões. A análise estatística indica que o modelo proposto permite compreender as estratégias de preço praticadas pelos provedores de Computação em Nuvem.
95 f.
description A computação em nuvem se apresenta como possibilidade eficiente de maximizar e flexibilizar os recursos computacionais das empresas Infrastructure as Service (IaaS) é um modelo de computação em nuvem focado na contratação de máquinas virtuais com o intuito de oferecer o uso de recursos computacionais de forma otimizada. Entretanto, a diversidade de planos ofertados, assim como as estratégias de precificação adotadas pelos provedores torna complexa a tomada de decisão. Neste sentido, com o objetivo de compreender a composição dos planos de precificação, esta dissertação desenvolveu modelos ecnométricos para estimular os preços dos recursos computacionais utilizados em planos de provedores de computação em nuvem da modalidade IaaS por meio de método hedônico. Para isso, foram analisados planos de computação em nuvem ofertados por três dos principais provedores Amazon Web Service, Google Cloud Platform e Microsolft Windos Azure. Os dados obtidos referem-se ao valor mensal, características qualitativas (como CPU, armazenamento e memória). Utilizou-se para estimular os coeficientes a análise de regressão Não Linear. Os testes estatísticos mostram que os modelos são eficazes. Os resultados permitiram identificar determinadas estratégias de precificação aplicadas. Os planos da Google Cloud apresentam um padrão semelhante de precificação dos recursos computacionais em relação a localização geográfica. Também e o provedor com o preço médio mais baixo pelo conjunto de recursos computacionais. Já a Azure utiliza de estratégias especificas de preços em cada um dos servidores, os preços praticados não apresentam relação com a localização geográfica. É também a Azure que possui o valor médio mais alto pelo conjunto CPU x Memória (1x3,75GB). Já na Amazon observou-se que a localização geográfica do servidor tem influência sobre os planos de precificação. Este também é o provedor que possui o maior valor entre s planos com sistemas operacionais Windows, preço 76% maior que a Azure. Em uma análise comparativa, os planos propostos pela Google mostraram ser mais vantajosos em situações com baixa e média quantidade de Armazenamento. A Amazon apresentou as melhores opções para o planos compostos por alta quantidade de armazenamento e com sistema operacional Linux e Windows, este último somente em algumas regiões. A análise estatística indica que o modelo proposto permite compreender as estratégias de preço praticadas pelos provedores de Computação em Nuvem.
publishDate 2018
dc.date.issued.fl_str_mv 2018-12-05
dc.date.available.fl_str_mv 2018
2018-12-05T23:02:07Z
dc.date.accessioned.fl_str_mv 2018-12-05T23:02:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5524
DMD_hdl_123456789/5524
url http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/5524
identifier_str_mv DMD_hdl_123456789/5524
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.bitstream.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIJUI
instname:Universidade Regional do Noroeste do Estado do Rio Grande do Sul
instacron:UNIJUI
reponame_str Repositório Institucional da UNIJUI
collection Repositório Institucional da UNIJUI
instname_str Universidade Regional do Noroeste do Estado do Rio Grande do Sul
instacron_str UNIJUI
institution UNIJUI
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1623417105871273984