Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br:8080/tede/handle/tede/1889 |
Resumo: | In the process of soy oil the consumption of energy is extremely high, which is always important to create new alternatives to energetic consumption reduction. This paper is carried on a case study of energetic integration in a soy oil factory operating with an average production of 15.000 tons/month. At first, the rate of flow, the input and output temperatures and the calorific capacity of all currents in the extraction phase were evaluated. After this assessment, based on the thermal potential change, four currents were selected, two denominated hot currents and two denominated cold currents. The first hot current (Q1) consists of a crude oil current from the post-separation phase of the solvent hexane with the input temperature of 110 ºC and output temperature of 80ºC. The second hot current (Q2) consists of a water current coming out of a boiler with an input temperature of 90 ºC and goes to the effluent treatment station having to be cooled to 55 ºC. These two currents have a thermal potential change of 262,8 kW/h. The third current denominated cold current F1, consists of a water current that comes from the decanter with a input temperature of 40 ºC and enters in the heater to reach an output temperature of 90 ºC, where the residual hexane is evaporated. The fourth current, denominated cold current F2, is a mixture of 70% of oil and 30% of hexane with an input temperature of 60 ºC and output temperature of 90 ºC. These two currents have a thermal necessity of 330 kW, for their heating. The synthesis methodology adopted for the heat exchangers network synthesis, due to the easiness in application and interaction with the user, was the Pinch Analysis. In the synthesis procedure, the Problem Table was developed and the Pinch Point was identified and the goals for the consumption of utilities were obtained for the maximum energy recovery. The problem was divided into two regions, below and above the Pinch Point. After the synthesis and optimization, the total cost for the network was calculated and all thermal exchange occurs above the Pinch Point . The proposed network consists of two heat exchangers and two boilers, so that a exchanger performs the thermal change between the Q1 (crude oil) and Q2 (miscela) currents. The second exchanger performs the change between Q2 (the water in the boiler exit) and F1 (water in the decanter exit) currents. The additional heating for the cold currents to reach final temperatures is provided by the boilers that are already being used in the factory. The economy generated by the reduction in the consumption of utilities was of R$ 91,000.00/year, meaning a reduction of steam consumption of 79,6% and a reduction of 5,3% in the global consumption of the plant steam. The investment needed for the two proposed heat exchangers in the network, is R$ 16.540,00. Evaluating the year total cost, that includes the annual capital cost of the exchangers, an annual reduction of R$ 114.445,00 for R$ 25.800,00 is verified corresponding to 77.5% reduction in the annual total cost after the network synthesis. The return rate for the investment proposed is only 3 months. Therefore, Pinch Analysis is confirmed to be efficient in the energetic integration of processes reaching meaningful economy results in thermal energy, contributing for the industrial processes that are more and more competitive. |
id |
UNIOESTE-1_04097f6db889f520fa8851fd9e1e8538 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/1889 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Módenes, Aparecido Nivaldohttp://lattes.cnpq.br/7294940837327863Quiñones, Fernando Rodolfo Espinozahttp://lattes.cnpq.br/7943425772967712Praxedes, Marco Auréliohttp://lattes.cnpq.br/1141917421063008http://lattes.cnpq.br/2314865596348530Fernandes Junior, Carlos Coutinho2017-07-10T18:08:13Z2010-09-232009-10-13FERNANDES JUNIOR, Carlos Coutinho. Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch. 2009. 94 f. Dissertação (Mestrado em Desenvolvimento de Processos) - Universidade Estadual do Oeste do Paraná, Toledo, 2009.http://tede.unioeste.br:8080/tede/handle/tede/1889In the process of soy oil the consumption of energy is extremely high, which is always important to create new alternatives to energetic consumption reduction. This paper is carried on a case study of energetic integration in a soy oil factory operating with an average production of 15.000 tons/month. At first, the rate of flow, the input and output temperatures and the calorific capacity of all currents in the extraction phase were evaluated. After this assessment, based on the thermal potential change, four currents were selected, two denominated hot currents and two denominated cold currents. The first hot current (Q1) consists of a crude oil current from the post-separation phase of the solvent hexane with the input temperature of 110 ºC and output temperature of 80ºC. The second hot current (Q2) consists of a water current coming out of a boiler with an input temperature of 90 ºC and goes to the effluent treatment station having to be cooled to 55 ºC. These two currents have a thermal potential change of 262,8 kW/h. The third current denominated cold current F1, consists of a water current that comes from the decanter with a input temperature of 40 ºC and enters in the heater to reach an output temperature of 90 ºC, where the residual hexane is evaporated. The fourth current, denominated cold current F2, is a mixture of 70% of oil and 30% of hexane with an input temperature of 60 ºC and output temperature of 90 ºC. These two currents have a thermal necessity of 330 kW, for their heating. The synthesis methodology adopted for the heat exchangers network synthesis, due to the easiness in application and interaction with the user, was the Pinch Analysis. In the synthesis procedure, the Problem Table was developed and the Pinch Point was identified and the goals for the consumption of utilities were obtained for the maximum energy recovery. The problem was divided into two regions, below and above the Pinch Point. After the synthesis and optimization, the total cost for the network was calculated and all thermal exchange occurs above the Pinch Point . The proposed network consists of two heat exchangers and two boilers, so that a exchanger performs the thermal change between the Q1 (crude oil) and Q2 (miscela) currents. The second exchanger performs the change between Q2 (the water in the boiler exit) and F1 (water in the decanter exit) currents. The additional heating for the cold currents to reach final temperatures is provided by the boilers that are already being used in the factory. The economy generated by the reduction in the consumption of utilities was of R$ 91,000.00/year, meaning a reduction of steam consumption of 79,6% and a reduction of 5,3% in the global consumption of the plant steam. The investment needed for the two proposed heat exchangers in the network, is R$ 16.540,00. Evaluating the year total cost, that includes the annual capital cost of the exchangers, an annual reduction of R$ 114.445,00 for R$ 25.800,00 is verified corresponding to 77.5% reduction in the annual total cost after the network synthesis. The return rate for the investment proposed is only 3 months. Therefore, Pinch Analysis is confirmed to be efficient in the energetic integration of processes reaching meaningful economy results in thermal energy, contributing for the industrial processes that are more and more competitive.No processo de fabricação de óleo de soja, o consumo de energia é extremamente alto, sendo sempre um tema de foco para criar alternativas de redução do consumo energético. Neste trabalho, realizou-se um estudo de caso de integração energética na etapa da extração de uma fábrica de óleo de soja operando com produção média de 15.000 toneladas/mês. Inicialmente avaliou-se as vazões, as temperaturas de entrada e saída e as capacidades caloríficas de todas as correntes da etapa de extração. Após esta avaliação, baseando-se no potencial de troca térmica, foram selecionadas quatro correntes, sendo duas delas denominadas de correntes quentes e outras duas denominadas de correntes frias. A primeira corrente quente (Q1), consiste em uma corrente de óleo bruto oriunda da etapa pós-separação do solvente hexano, com temperatura de entrada de 110 ºC e temperatura de saída de 80ºC. A segunda corrente quente (Q2), consiste em uma corrente de água que sai de um aquecedor com temperatura de entrada de 90ºC e vai para a estação de tratamento de efluentes, necessitando ser resfriada até 55 ºC. Essas duas correntes quentes têm um potencial de troca térmica de 262,8 kW/h. A terceira corrente, denominada de corrente fria F1, consiste em uma corrente de água que sai do decantador a 40 ºC, e entra no aquecedor para atingir a temperatura de saída de 90 ºC, onde hexano residual é evaporado. A quarta corrente, denominada de corrente fria F2, consiste em uma mistura de 70% óleo e 30% hexano com temperaturas de entrada de 60 ºC e de saída de 90 ºC. Essas duas correntes (F1 e F2) tem uma necessidade térmica para seu aquecimento de 330 kW. A metodologia de síntese adotada para a síntese da rede de trocadores de calor, devido à facilidade de aplicação e interação com o usuário, foi a Análise Pinch. No procedimento de síntese, inicialmente é construída a tabela do problema onde identificou-se o ponto de estrangulamento energético, ou ponto Pinch, obtendo-se assim as metas de consumo de utilidades para a máxima recuperação de energia. Após esta etapa, o problema foi dividido em duas regiões: abaixo e acima do Pinch, sendo realizada a síntese da rede. No caso estudado, toda a troca térmica ocorre na região acima do Pinch. Assim, após a síntese e otimização da rede, calculou-se o custo total anual. A rede proposta consiste em 2 trocadores de calor e dois aquecedores, sendo que um trocador realiza troca térmica entre a corrente Q1 (óleo bruto) e a corrente F2 (a miscela), e o segundo trocador realiza troca entre a corrente Q2 (água na saída do aquecedor) e a corrente F1 (água na saída do decantador). O aquecimento complementar para as correntes frias atingirem suas temperaturas finais, é provido pelos aquecedores já existentes na linha. A economia gerada pela redução de consumo de utilidades foi de R$ 91.000,00/ano, o que representa uma economia de consumo de vapor de 79,6%, acarretando uma redução de 5,3% do consumo global de vapor da planta. O investimento necessário para os dois trocadores de calor propostos na rede é de R$ 16.540,00, e avaliando-se o custo total anual, verifica-se uma redução de R$ 114.445,00 para R$ 25.800,00, correspondendo a uma redução de 77,5% no custo total anual, após a síntese da rede. A taxa de retorno para o investimento proposto é de apenas 3 meses. Desta forma, confirma-se a eficiência da Análise Pinch na integração energética de processos, atingindo resultados significativos de economia de energia térmica,contribuindo para processos industriais cada vez mais competitivos.Made available in DSpace on 2017-07-10T18:08:13Z (GMT). No. of bitstreams: 1 Carlos Coutinho Fernandes Junior.pdf: 1216021 bytes, checksum: 140e087a28751c7c2ea0079d79d89a2d (MD5) Previous issue date: 2009-10-13application/pdfpor-2624803687637593200500Universidade Estadual do Oeste do ParanáToledoPrograma de Mestrado em Engenharia QuímicaUNIOESTEBRCentro de Engenharias e Ciências Exatashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAnálise PinchIntegração energéticaMáxima recuperação de energiaPinch AnalysisEnergetic integrationMaximum energy recoveryCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICAIntegração energética da etapa de extração de óleo de soja, utilizando a análise PinchEnergetic integration of extraction step of soybean oil, using Pinch analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-7734402124082146922600reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALCarlos_Coutinho_Fernandes_Junior_2009.pdfCarlos_Coutinho_Fernandes_Junior_2009.pdfapplication/pdf1215740http://tede.unioeste.br:8080/tede/bitstream/tede/1889/1/Carlos_Coutinho_Fernandes_Junior_2009.pdfe015bd673f1912d9b448064afce96242MD51tede/18892024-09-18 14:02:05.581oai:tede.unioeste.br:tede/1889Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2024-09-18T17:02:05Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch |
dc.title.alternative.eng.fl_str_mv |
Energetic integration of extraction step of soybean oil, using Pinch analysis |
title |
Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch |
spellingShingle |
Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch Fernandes Junior, Carlos Coutinho Análise Pinch Integração energética Máxima recuperação de energia Pinch Analysis Energetic integration Maximum energy recovery CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA |
title_short |
Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch |
title_full |
Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch |
title_fullStr |
Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch |
title_full_unstemmed |
Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch |
title_sort |
Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch |
author |
Fernandes Junior, Carlos Coutinho |
author_facet |
Fernandes Junior, Carlos Coutinho |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Módenes, Aparecido Nivaldo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7294940837327863 |
dc.contributor.referee1.fl_str_mv |
Quiñones, Fernando Rodolfo Espinoza |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/7943425772967712 |
dc.contributor.referee2.fl_str_mv |
Praxedes, Marco Aurélio |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1141917421063008 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2314865596348530 |
dc.contributor.author.fl_str_mv |
Fernandes Junior, Carlos Coutinho |
contributor_str_mv |
Módenes, Aparecido Nivaldo Quiñones, Fernando Rodolfo Espinoza Praxedes, Marco Aurélio |
dc.subject.por.fl_str_mv |
Análise Pinch Integração energética Máxima recuperação de energia |
topic |
Análise Pinch Integração energética Máxima recuperação de energia Pinch Analysis Energetic integration Maximum energy recovery CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Pinch Analysis Energetic integration Maximum energy recovery |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA |
description |
In the process of soy oil the consumption of energy is extremely high, which is always important to create new alternatives to energetic consumption reduction. This paper is carried on a case study of energetic integration in a soy oil factory operating with an average production of 15.000 tons/month. At first, the rate of flow, the input and output temperatures and the calorific capacity of all currents in the extraction phase were evaluated. After this assessment, based on the thermal potential change, four currents were selected, two denominated hot currents and two denominated cold currents. The first hot current (Q1) consists of a crude oil current from the post-separation phase of the solvent hexane with the input temperature of 110 ºC and output temperature of 80ºC. The second hot current (Q2) consists of a water current coming out of a boiler with an input temperature of 90 ºC and goes to the effluent treatment station having to be cooled to 55 ºC. These two currents have a thermal potential change of 262,8 kW/h. The third current denominated cold current F1, consists of a water current that comes from the decanter with a input temperature of 40 ºC and enters in the heater to reach an output temperature of 90 ºC, where the residual hexane is evaporated. The fourth current, denominated cold current F2, is a mixture of 70% of oil and 30% of hexane with an input temperature of 60 ºC and output temperature of 90 ºC. These two currents have a thermal necessity of 330 kW, for their heating. The synthesis methodology adopted for the heat exchangers network synthesis, due to the easiness in application and interaction with the user, was the Pinch Analysis. In the synthesis procedure, the Problem Table was developed and the Pinch Point was identified and the goals for the consumption of utilities were obtained for the maximum energy recovery. The problem was divided into two regions, below and above the Pinch Point. After the synthesis and optimization, the total cost for the network was calculated and all thermal exchange occurs above the Pinch Point . The proposed network consists of two heat exchangers and two boilers, so that a exchanger performs the thermal change between the Q1 (crude oil) and Q2 (miscela) currents. The second exchanger performs the change between Q2 (the water in the boiler exit) and F1 (water in the decanter exit) currents. The additional heating for the cold currents to reach final temperatures is provided by the boilers that are already being used in the factory. The economy generated by the reduction in the consumption of utilities was of R$ 91,000.00/year, meaning a reduction of steam consumption of 79,6% and a reduction of 5,3% in the global consumption of the plant steam. The investment needed for the two proposed heat exchangers in the network, is R$ 16.540,00. Evaluating the year total cost, that includes the annual capital cost of the exchangers, an annual reduction of R$ 114.445,00 for R$ 25.800,00 is verified corresponding to 77.5% reduction in the annual total cost after the network synthesis. The return rate for the investment proposed is only 3 months. Therefore, Pinch Analysis is confirmed to be efficient in the energetic integration of processes reaching meaningful economy results in thermal energy, contributing for the industrial processes that are more and more competitive. |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009-10-13 |
dc.date.available.fl_str_mv |
2010-09-23 |
dc.date.accessioned.fl_str_mv |
2017-07-10T18:08:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FERNANDES JUNIOR, Carlos Coutinho. Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch. 2009. 94 f. Dissertação (Mestrado em Desenvolvimento de Processos) - Universidade Estadual do Oeste do Paraná, Toledo, 2009. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br:8080/tede/handle/tede/1889 |
identifier_str_mv |
FERNANDES JUNIOR, Carlos Coutinho. Integração energética da etapa de extração de óleo de soja, utilizando a análise Pinch. 2009. 94 f. Dissertação (Mestrado em Desenvolvimento de Processos) - Universidade Estadual do Oeste do Paraná, Toledo, 2009. |
url |
http://tede.unioeste.br:8080/tede/handle/tede/1889 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.department.fl_str_mv |
-7734402124082146922 |
dc.relation.confidence.fl_str_mv |
600 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Toledo |
dc.publisher.program.fl_str_mv |
Programa de Mestrado em Engenharia Química |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Centro de Engenharias e Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Toledo |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/1889/1/Carlos_Coutinho_Fernandes_Junior_2009.pdf |
bitstream.checksum.fl_str_mv |
e015bd673f1912d9b448064afce96242 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723320143380480 |