Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br/handle/tede/4874 |
Resumo: | Atmospheric emissions have been one of the biggest problems to be faced by agroindustries located in the western region of Paraná. The volume of scientific research results confirming the efficacy of the use of Advanced Oxidative Processes has been shown to be significant, and technological and innovation complementation is of the utmost importance in order to enable the application of this knowledge. The objective of this work was to develop an ALTERNATIVE TECHNOLOGY FOR DEGRADATION OF H2S PRESENT IN GASEOUS POLLUTANTS USING PHOTOCATALYST COATED WITH TiO2. For this, a rectangular reactor was developed and three types of photocatalysts based on acrylic paint, Fotosan® and polyurethane - and two from pure TiO2 supported on fiber cement and glass fiber were tested to evaluate the photocatalytic degradation of hydrogen sulphide (H2S) in the gas phase. The surfaces formed by these coatings were structural and morphologically characterized by scanning electron microscopy with dispersive energy X-ray spectroscopy (SEM-EDS) and X-ray diffractometry (XRD). The flow rate and the inlet concentration of H2S were evaluated as operational performance parameters of the reactor. Through artificial radiation UV degradation efficiencies were obtained by up to 95% degradation at a flow rate of 2 L min-1 (residence time of 1 min and 55 s) and initial concentration of 31 ppm of H2S using acrylic paint. The Italian photosan® photocatalyst was able to oxidize up to 75% at a flow rate of 2 L min-1. Regarding the use of solar radiation, acrylic paint did not present photocatalytic activity, while Fotosan® paint maintained a 75% efficiency. In addition, the H2S degradation kinetics were modeled according to the Langmuir-Hinshelwood (L-H), first order and second order models. For the acrylic paint the best fit corresponded to the second order model (k = 2.2x10-1 min -1 and R2 = 0.98), and for Fotosan® paint the first order model adequately represented the experimental data (k = 8.6x10-1 min-1 and R2 = 0.99). The results suggest that the flow has a more important influence on photocatalytic degradation than the feed concentration. Based on the analysis of FTIR-ATR, it is assumed that H2S was oxidized to SO42-, a condition that led to the deactivation of the photocatalyst after 190 min and 290 min of semi-continuous use for acrylic and Fotosan® paints, respectively. The study of the aging of the translucent materials (acrylic, glass and polycarbonate) revealed that glass is the material that has the greatest ability to maintain its optical properties (UV-Vis transmittance). Fluid dynamics simulation using the software Comsol Multiphysics 5.0 allowed to establish the speed profiles and calculate the residence times (RT) for each flow tested. The simulation concluded that the simulated RT values represent on average 26% the value of the theoretical RT for the studied flow range (2 to 14 L min-1). The notions of the fluid dynamics simulation were used to optimize the geometry of the final proposal of the alternative technology. |
id |
UNIOESTE-1_14445a88c9ad2f10244ba458506e39cf |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/4874 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Morejon, Camilo Freddy Mendozahttp://lattes.cnpq.br/4287227848714653Morejon, Camilo Freddy Mendozahttp://lattes.cnpq.br/4287227848714653Silva, Edson Antônio dahttp://lattes.cnpq.br/93044938757000Hasan, Salah Din Mahmudhttp://lattes.cnpq.br/4225442402720592Zanatta, Elciane Reginahttp://lattes.cnpq.br/7208551176694191Almeida, Robson Luciano dehttp://lattes.cnpq.br/8506098027799194http://lattes.cnpq.br/5028430253887652Lied, Eduardo Borges2020-08-12T15:50:29Z2018-02-15LIED, Eduardo Borges. Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2. 2018. 246 f. Tese (Doutorado em Engenharia Química) - Universidade Estadual do Oeste do Paraná, Toledo, 2018.http://tede.unioeste.br/handle/tede/4874Atmospheric emissions have been one of the biggest problems to be faced by agroindustries located in the western region of Paraná. The volume of scientific research results confirming the efficacy of the use of Advanced Oxidative Processes has been shown to be significant, and technological and innovation complementation is of the utmost importance in order to enable the application of this knowledge. The objective of this work was to develop an ALTERNATIVE TECHNOLOGY FOR DEGRADATION OF H2S PRESENT IN GASEOUS POLLUTANTS USING PHOTOCATALYST COATED WITH TiO2. For this, a rectangular reactor was developed and three types of photocatalysts based on acrylic paint, Fotosan® and polyurethane - and two from pure TiO2 supported on fiber cement and glass fiber were tested to evaluate the photocatalytic degradation of hydrogen sulphide (H2S) in the gas phase. The surfaces formed by these coatings were structural and morphologically characterized by scanning electron microscopy with dispersive energy X-ray spectroscopy (SEM-EDS) and X-ray diffractometry (XRD). The flow rate and the inlet concentration of H2S were evaluated as operational performance parameters of the reactor. Through artificial radiation UV degradation efficiencies were obtained by up to 95% degradation at a flow rate of 2 L min-1 (residence time of 1 min and 55 s) and initial concentration of 31 ppm of H2S using acrylic paint. The Italian photosan® photocatalyst was able to oxidize up to 75% at a flow rate of 2 L min-1. Regarding the use of solar radiation, acrylic paint did not present photocatalytic activity, while Fotosan® paint maintained a 75% efficiency. In addition, the H2S degradation kinetics were modeled according to the Langmuir-Hinshelwood (L-H), first order and second order models. For the acrylic paint the best fit corresponded to the second order model (k = 2.2x10-1 min -1 and R2 = 0.98), and for Fotosan® paint the first order model adequately represented the experimental data (k = 8.6x10-1 min-1 and R2 = 0.99). The results suggest that the flow has a more important influence on photocatalytic degradation than the feed concentration. Based on the analysis of FTIR-ATR, it is assumed that H2S was oxidized to SO42-, a condition that led to the deactivation of the photocatalyst after 190 min and 290 min of semi-continuous use for acrylic and Fotosan® paints, respectively. The study of the aging of the translucent materials (acrylic, glass and polycarbonate) revealed that glass is the material that has the greatest ability to maintain its optical properties (UV-Vis transmittance). Fluid dynamics simulation using the software Comsol Multiphysics 5.0 allowed to establish the speed profiles and calculate the residence times (RT) for each flow tested. The simulation concluded that the simulated RT values represent on average 26% the value of the theoretical RT for the studied flow range (2 to 14 L min-1). The notions of the fluid dynamics simulation were used to optimize the geometry of the final proposal of the alternative technology.As emissões atmosféricas têm se constituído em um dos maiores problemas a ser enfrentado pelas agroindústrias localizadas na região Oeste do Paraná. Tem se mostrado significativo o volume de resultados de pesquisas científicas que confirmam a eficácia do uso de Processos Oxidativos Avançados, sendo premente a complementação tecnológica e de inovação no sentido de viabilizar a aplicação deste conhecimento. O objetivo do trabalho foi o desenvolvimento de uma TECNOLOGIA ALTERNATIVA PARA A DEGRADAÇÃO DO H2S CONTIDO EM POLUENTES GASOSOS UTILIZANDO FOTOCATALISADOR REVESTIDO DE TiO2. Para isso foi projetado um reator retangular fotocatalítico em fase gasosa com superfícies flexíveis para testar vários tipos de fotocatalisadores (suportados em material de fibrocimento e fibra de vidro) a base de tinta acrílica, Fotosan®, poliuretana e TiO2 puro, em todos os casos visando avaliar a degradação fotocatalítica do sulfeto de hidrogênio (H2S) contido em poluentes gasosos. As superfícies formadas por estes revestimentos foram caracterizadas estrutural e morfologicamente por microscopia eletrônica de varredura com espectroscopia de energia dispersiva de raios-X (MEV-EDS) e difratometria de raios X (DRX). A vazão e a concentração inicial de H2S foram avaliadas como parâmetros operacionais de desempenho do reator. Por meio da radiação artificial UV foram obtidas eficiências de degradação até 95% para uma vazão de 2 L min-1 (tempo de residência de 1 min e 55 s) e concentração inicial de H2S de 31 ppm utilizando tinta acrílica. O fotocatalisador italiano a base de tinta Fotosan® conseguiu oxidar até 75% para uma vazão de 2 L min-1. Com relação ao uso da radiação solar a tinta acrílica não apresentou atividade fotocatalítica, enquanto que a tinta Fotosan® manteve eficiência de 75%. Além disso, foi modelada a cinética de degradação do H2S de acordo com os modelos de Langmuir-Hinshelwood (L-H), primeira ordem e segunda ordem. Para a tinta acrílica o melhor ajuste correspondeu ao modelo de segunda ordem (k = 2,2.10-1 min-1 e R2 = 0,98), e para a tinta Fotosan® o modelo de primeira ordem representou adequadamente os dados experimentais (k = 8,6.10-1 min-1 e R2 = 0,99). Os resultados sugerem que a vazão tem uma influência mais importante na degradação fotocatalítica do que a concentração de alimentação. Com base na análise de FTIR-ATR supõe-se que o H2S tenha sido oxidado a SO42-, condição que levou a desativação do fotocatalisador após 190 min e 290 min de uso semi-contínuo, para as tintas acrílica e Fotosan®, respectivamente. O estudo de envelhecimento dos materiais translúcidos (acrílico, vidro e policarbonato) revelou que o vidro é o material que possui maior capacidade de manutenção de suas propriedades ópticas (transmitância UV-Vis). A simulação fluidodinâmica utilizando o software Comsol Multiphysics 5.0 permitiu estabelecer os perfis de velocidade e calcular os tempos de residência (TR) para cada vazão testada. A simulação concluiu que os valores de TR simulados representam em média 26% o valor do TR teórico para a faixa de vazão estudada (2 a 14 L min-1). Os resultados da simulação fluidodinâmica contribuiu na otimização da geometria da tecnologia alternativa resultante.Submitted by Marilene Donadel (marilene.donadel@unioeste.br) on 2020-08-12T15:50:29Z No. of bitstreams: 3 Eduardo_Lied_2018_P1.pdf: 4520465 bytes, checksum: aeed954c99c5b2b89cca5066ea9d783f (MD5) Eduardo_Lied_2018_P2.pdf: 4324087 bytes, checksum: 5eab0e16056630bf8315e029610d0f2e (MD5) Eduardo_Lied_2018_P3.pdf: 4400625 bytes, checksum: 70567e0d5963b6b8920ea5d368139fa8 (MD5)Made available in DSpace on 2020-08-12T15:50:29Z (GMT). No. of bitstreams: 3 Eduardo_Lied_2018_P1.pdf: 4520465 bytes, checksum: aeed954c99c5b2b89cca5066ea9d783f (MD5) Eduardo_Lied_2018_P2.pdf: 4324087 bytes, checksum: 5eab0e16056630bf8315e029610d0f2e (MD5) Eduardo_Lied_2018_P3.pdf: 4400625 bytes, checksum: 70567e0d5963b6b8920ea5d368139fa8 (MD5) Previous issue date: 2018-02-15application/pdfpor-2624803687637593200500Universidade Estadual do Oeste do ParanáToledoPrograma de Pós-Graduação em Engenharia QuímicaUNIOESTEBrasilCentro de Engenharias e Ciências ExatasReatorTinta fotocatalíticaOdorSulfeto de hidrogênioReactorPhotocatalytic paintOdourHydrogen sulphideENGENHARIAS::ENGENHARIA QUIMICADegradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2Degradation of H2S present in gaseous pollutants using photocatalyst coated with TiO2info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis1582274381427649589600600600-7734402124082146922-1848640261096870878info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALEduardo_Lied_2018_P1.pdfEduardo_Lied_2018_P1.pdfapplication/pdf4520465http://tede.unioeste.br:8080/tede/bitstream/tede/4874/2/Eduardo_Lied_2018_P1.pdfaeed954c99c5b2b89cca5066ea9d783fMD52Eduardo_Lied_2018_P2.pdfEduardo_Lied_2018_P2.pdfapplication/pdf4324087http://tede.unioeste.br:8080/tede/bitstream/tede/4874/3/Eduardo_Lied_2018_P2.pdf5eab0e16056630bf8315e029610d0f2eMD53Eduardo_Lied_2018_P3.pdfEduardo_Lied_2018_P3.pdfapplication/pdf4400625http://tede.unioeste.br:8080/tede/bitstream/tede/4874/4/Eduardo_Lied_2018_P3.pdf70567e0d5963b6b8920ea5d368139fa8MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/4874/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/48742020-08-12 12:50:29.42oai:tede.unioeste.br:tede/4874Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2020-08-12T15:50:29Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2 |
dc.title.alternative.eng.fl_str_mv |
Degradation of H2S present in gaseous pollutants using photocatalyst coated with TiO2 |
title |
Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2 |
spellingShingle |
Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2 Lied, Eduardo Borges Reator Tinta fotocatalítica Odor Sulfeto de hidrogênio Reactor Photocatalytic paint Odour Hydrogen sulphide ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2 |
title_full |
Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2 |
title_fullStr |
Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2 |
title_full_unstemmed |
Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2 |
title_sort |
Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2 |
author |
Lied, Eduardo Borges |
author_facet |
Lied, Eduardo Borges |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Morejon, Camilo Freddy Mendoza |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4287227848714653 |
dc.contributor.referee1.fl_str_mv |
Morejon, Camilo Freddy Mendoza |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/4287227848714653 |
dc.contributor.referee2.fl_str_mv |
Silva, Edson Antônio da |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/93044938757000 |
dc.contributor.referee3.fl_str_mv |
Hasan, Salah Din Mahmud |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4225442402720592 |
dc.contributor.referee4.fl_str_mv |
Zanatta, Elciane Regina |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/7208551176694191 |
dc.contributor.referee5.fl_str_mv |
Almeida, Robson Luciano de |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/8506098027799194 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5028430253887652 |
dc.contributor.author.fl_str_mv |
Lied, Eduardo Borges |
contributor_str_mv |
Morejon, Camilo Freddy Mendoza Morejon, Camilo Freddy Mendoza Silva, Edson Antônio da Hasan, Salah Din Mahmud Zanatta, Elciane Regina Almeida, Robson Luciano de |
dc.subject.por.fl_str_mv |
Reator Tinta fotocatalítica Odor Sulfeto de hidrogênio |
topic |
Reator Tinta fotocatalítica Odor Sulfeto de hidrogênio Reactor Photocatalytic paint Odour Hydrogen sulphide ENGENHARIAS::ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Reactor Photocatalytic paint Odour Hydrogen sulphide |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA |
description |
Atmospheric emissions have been one of the biggest problems to be faced by agroindustries located in the western region of Paraná. The volume of scientific research results confirming the efficacy of the use of Advanced Oxidative Processes has been shown to be significant, and technological and innovation complementation is of the utmost importance in order to enable the application of this knowledge. The objective of this work was to develop an ALTERNATIVE TECHNOLOGY FOR DEGRADATION OF H2S PRESENT IN GASEOUS POLLUTANTS USING PHOTOCATALYST COATED WITH TiO2. For this, a rectangular reactor was developed and three types of photocatalysts based on acrylic paint, Fotosan® and polyurethane - and two from pure TiO2 supported on fiber cement and glass fiber were tested to evaluate the photocatalytic degradation of hydrogen sulphide (H2S) in the gas phase. The surfaces formed by these coatings were structural and morphologically characterized by scanning electron microscopy with dispersive energy X-ray spectroscopy (SEM-EDS) and X-ray diffractometry (XRD). The flow rate and the inlet concentration of H2S were evaluated as operational performance parameters of the reactor. Through artificial radiation UV degradation efficiencies were obtained by up to 95% degradation at a flow rate of 2 L min-1 (residence time of 1 min and 55 s) and initial concentration of 31 ppm of H2S using acrylic paint. The Italian photosan® photocatalyst was able to oxidize up to 75% at a flow rate of 2 L min-1. Regarding the use of solar radiation, acrylic paint did not present photocatalytic activity, while Fotosan® paint maintained a 75% efficiency. In addition, the H2S degradation kinetics were modeled according to the Langmuir-Hinshelwood (L-H), first order and second order models. For the acrylic paint the best fit corresponded to the second order model (k = 2.2x10-1 min -1 and R2 = 0.98), and for Fotosan® paint the first order model adequately represented the experimental data (k = 8.6x10-1 min-1 and R2 = 0.99). The results suggest that the flow has a more important influence on photocatalytic degradation than the feed concentration. Based on the analysis of FTIR-ATR, it is assumed that H2S was oxidized to SO42-, a condition that led to the deactivation of the photocatalyst after 190 min and 290 min of semi-continuous use for acrylic and Fotosan® paints, respectively. The study of the aging of the translucent materials (acrylic, glass and polycarbonate) revealed that glass is the material that has the greatest ability to maintain its optical properties (UV-Vis transmittance). Fluid dynamics simulation using the software Comsol Multiphysics 5.0 allowed to establish the speed profiles and calculate the residence times (RT) for each flow tested. The simulation concluded that the simulated RT values represent on average 26% the value of the theoretical RT for the studied flow range (2 to 14 L min-1). The notions of the fluid dynamics simulation were used to optimize the geometry of the final proposal of the alternative technology. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-02-15 |
dc.date.accessioned.fl_str_mv |
2020-08-12T15:50:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LIED, Eduardo Borges. Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2. 2018. 246 f. Tese (Doutorado em Engenharia Química) - Universidade Estadual do Oeste do Paraná, Toledo, 2018. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br/handle/tede/4874 |
identifier_str_mv |
LIED, Eduardo Borges. Degradação do H2S contido em poluentes gasosos utilizando fotocatalisador revestido de TiO2. 2018. 246 f. Tese (Doutorado em Engenharia Química) - Universidade Estadual do Oeste do Paraná, Toledo, 2018. |
url |
http://tede.unioeste.br/handle/tede/4874 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
1582274381427649589 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-7734402124082146922 |
dc.relation.cnpq.fl_str_mv |
-1848640261096870878 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Toledo |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Engenharias e Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Toledo |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/4874/2/Eduardo_Lied_2018_P1.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/4874/3/Eduardo_Lied_2018_P2.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/4874/4/Eduardo_Lied_2018_P3.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/4874/1/license.txt |
bitstream.checksum.fl_str_mv |
aeed954c99c5b2b89cca5066ea9d783f 5eab0e16056630bf8315e029610d0f2e 70567e0d5963b6b8920ea5d368139fa8 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723427702112256 |