Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná

Detalhes bibliográficos
Autor(a) principal: Silva, Ana Claudia Guedes
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br/handle/tede/3760
Resumo: The design of hydrologically homogeneous regions (RHH) is an essential procedure to provide information essential to the modeling, planning, and management of water resources, especially when it is necessary to perform the regionalization of flows, aiming to estimate the water availability in sections without measurements. The definition of strategies for the management and conservation of natural resources depends on information obtained through the identification of RHH, also being one of the steps of a study of regionalization of flows. Thus, this work has the objective of identifying the RHH in the state of Paraná through the grouping method Fuzzy C-Means. A total of 9 variables were used for the 114 fluviometric stations, with 4 dependent variables related to the characteristic flows (annual average long-term flow (Qmld), minimum annual flow with seven days duration and 10-year return period (Q7,10), flow rates associated to the 95% (Q95) and 90% (Q90) permanencies) and 5 independent variables related to the morphometric characteristics of the station (drainage area (AD - m²), sum of drainage (SD - m) (LA - Lat and longitude - Long). From the principal components analysis (PCA), the variables Qmld, DD, Lat and Long were identified as the least representative, being discarded from the study, proceeding with the analysis using only the variables AD, SD, Q90, Q95, and Q7,10. The results were obtained using the Fuzzy C-Means for the chosen variables, and the smallest objective function was found for 4 Clusters in the study group, with index of and fuzzification (m) 1.7. Separating the fluviometric stations by clusters through degrees of pertinence, the largest number of stations were obtained in Cluster 3 (83 stations), followed by Cluster 4 (13 stations) and Clusters 1 and 2 (7 stations in each cluster), and only 4 stations were not inserted in any cluster, being classified as nebulae, where the groups were determined practically by the distribution of the AD and SD variables. The smaller areas of coverage, analyzed flows and the smaller amount of drainage in the coverage area of the stations were found in Cluster 3, considering they were well spread in the state of Paraná. Clusters 1 and 4 were intermediate among the other clusters in all parameters evaluated. The Fuzzy C-Means algorithm proved to be efficient for the grouping of fluviometric stations in the state of Paraná, where it was possible to find the characteristics of each cluster formed, without overlapping of data in the analyzed variables.
id UNIOESTE-1_1c0803870c3a312992f02ef39f30f5bd
oai_identifier_str oai:tede.unioeste.br:tede/3760
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Gomes, Benedito Martinshttp://lattes.cnpq.br/4355317240921602Mello, Eloy Lemos dehttp://lattes.cnpq.br/2106300099734952Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Frigo, Jiam Pireshttp://lattes.cnpq.br/6443025153770870http://lattes.cnpq.br/7655661739629134Silva, Ana Claudia Guedes2018-06-15T17:07:21Z2018-02-07SILVA, Ana Claudia Guedes. Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná. 2018. 90 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.http://tede.unioeste.br/handle/tede/3760The design of hydrologically homogeneous regions (RHH) is an essential procedure to provide information essential to the modeling, planning, and management of water resources, especially when it is necessary to perform the regionalization of flows, aiming to estimate the water availability in sections without measurements. The definition of strategies for the management and conservation of natural resources depends on information obtained through the identification of RHH, also being one of the steps of a study of regionalization of flows. Thus, this work has the objective of identifying the RHH in the state of Paraná through the grouping method Fuzzy C-Means. A total of 9 variables were used for the 114 fluviometric stations, with 4 dependent variables related to the characteristic flows (annual average long-term flow (Qmld), minimum annual flow with seven days duration and 10-year return period (Q7,10), flow rates associated to the 95% (Q95) and 90% (Q90) permanencies) and 5 independent variables related to the morphometric characteristics of the station (drainage area (AD - m²), sum of drainage (SD - m) (LA - Lat and longitude - Long). From the principal components analysis (PCA), the variables Qmld, DD, Lat and Long were identified as the least representative, being discarded from the study, proceeding with the analysis using only the variables AD, SD, Q90, Q95, and Q7,10. The results were obtained using the Fuzzy C-Means for the chosen variables, and the smallest objective function was found for 4 Clusters in the study group, with index of and fuzzification (m) 1.7. Separating the fluviometric stations by clusters through degrees of pertinence, the largest number of stations were obtained in Cluster 3 (83 stations), followed by Cluster 4 (13 stations) and Clusters 1 and 2 (7 stations in each cluster), and only 4 stations were not inserted in any cluster, being classified as nebulae, where the groups were determined practically by the distribution of the AD and SD variables. The smaller areas of coverage, analyzed flows and the smaller amount of drainage in the coverage area of the stations were found in Cluster 3, considering they were well spread in the state of Paraná. Clusters 1 and 4 were intermediate among the other clusters in all parameters evaluated. The Fuzzy C-Means algorithm proved to be efficient for the grouping of fluviometric stations in the state of Paraná, where it was possible to find the characteristics of each cluster formed, without overlapping of data in the analyzed variables.O delineamento de regiões hidrologicamente homogêneas (RHH) é um procedimento essencial para provimento de informações indispensáveis aos trabalhos de modelagem, planejamento e gestão de recursos hídricos, principalmente quando se tem a necessidade de realizar a regionalização de vazões, visando estimar a disponibilidade hídrica em seções desprovidas de medições. A definição de estratégias de manejo e conservação dos recursos naturais depende de informações obtidas por meio da identificação de RHH, sendo também um dos passos de um estudo de regionalização de vazões. Assim, este trabalho tem como objetivo a identificação das RHH no estado do Paraná através do método de agrupamento Fuzzy C-Means. Foram utilizadas 9 variáveis, individualizadas para as 114 estações fluviométricas adotadas, sendo 4 variáveis dependentes referentes às vazões características (vazão média anual de longa duração (Qmld), vazão mínima anual com sete dias de duração e período de retorno de 10 anos (Q7,10), vazões associadas às permanências de 95% (Q95) e 90% (Q90)) e 5 independentes referentes às características morfometrias da estação (área de drenagem (AD – m²), soma das drenagens (SD - m), densidade de drenagem (DD – 1/m) e a localização geográfica (latitude - Lat e longitude - Long). A partir da análise de componentes principais (ACP) identificou-se as variáveis Qmld, DD, Lat e Long como as menos representativas, sendo excluídas do estudo, dando procedência à análise de agrupamentos apenas com as variáveis AD, SD, Q90, Q95 e Q7,10. Aplicou-se o Fuzzy C-Means para as variáveis escolhidas, sendo que a menor função objetiva encontrada foi para 4 Clusters no índice de fuzzificação (m) 1,7. Separando as estações fluviométricas por clusters através dos graus de pertinência, obtivemos o maior número de estações no Cluster 3 (83 estações), seguidos do Cluster 4 (13 estações) e dos Clusters 1 e 2 (7 estações em cada cluster), e apenas 4 estações não foram inseridas em nenhum cluster, sendo classificadas como nebulosas, sendo que os grupos foram determinados praticamente pela distribuição das variáveis AD e SD. As menores áreas de abrangência, vazões analisadas e as menores quantidade de drenagens na área de cobertura das estações foram encontras no Cluster 3, que estão bem espalhadas no estado do Paraná. Já os Clusters 1 e 4 ficaram intermediários entre os demais clusters em todos os parâmetros avaliados. O algoritmo Fuzzy C-Means se mostrou eficiente para o agrupamento das estações fluviométricas no estado do Paraná, onde foi possível encontrar as características de cada cluster formado, sem haver sobreposição de dados nos intervalos das variáveis analisadas.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2018-06-15T17:07:21Z No. of bitstreams: 2 Ana Claudia_Silva2018.pdf: 1741410 bytes, checksum: 83384ab7c02835c3d776f862defc84c1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-06-15T17:07:21Z (GMT). No. of bitstreams: 2 Ana Claudia_Silva2018.pdf: 1741410 bytes, checksum: 83384ab7c02835c3d776f862defc84c1 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-07Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessFuzzificaçãoVazãoAnálise de agrupamentoFuzzificationFlowCluster analysisCIENCIAS AGRARIAS::ENGENHARIA AGRICOLAIdentificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do ParanáIdentification of hydrologically homogeneous regions by fuzzy c-means group in the state of Paranáinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5347692450416052129600600600600221437444286838201591854457215887615552075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALAna Claudia_Silva2018.pdfAna Claudia_Silva2018.pdfapplication/pdf1741410http://tede.unioeste.br:8080/tede/bitstream/tede/3760/5/Ana+Claudia_Silva2018.pdf83384ab7c02835c3d776f862defc84c1MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/3760/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3760/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3760/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/3760/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/37602018-06-15 14:07:21.88oai:tede.unioeste.br:tede/3760Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2018-06-15T17:07:21Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná
dc.title.alternative.eng.fl_str_mv Identification of hydrologically homogeneous regions by fuzzy c-means group in the state of Paraná
title Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná
spellingShingle Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná
Silva, Ana Claudia Guedes
Fuzzificação
Vazão
Análise de agrupamento
Fuzzification
Flow
Cluster analysis
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná
title_full Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná
title_fullStr Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná
title_full_unstemmed Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná
title_sort Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná
author Silva, Ana Claudia Guedes
author_facet Silva, Ana Claudia Guedes
author_role author
dc.contributor.advisor1.fl_str_mv Gomes, Benedito Martins
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4355317240921602
dc.contributor.referee1.fl_str_mv Mello, Eloy Lemos de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2106300099734952
dc.contributor.referee2.fl_str_mv Johann, Jerry Adriani
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.referee3.fl_str_mv Frigo, Jiam Pires
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/6443025153770870
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7655661739629134
dc.contributor.author.fl_str_mv Silva, Ana Claudia Guedes
contributor_str_mv Gomes, Benedito Martins
Mello, Eloy Lemos de
Johann, Jerry Adriani
Frigo, Jiam Pires
dc.subject.por.fl_str_mv Fuzzificação
Vazão
Análise de agrupamento
topic Fuzzificação
Vazão
Análise de agrupamento
Fuzzification
Flow
Cluster analysis
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Fuzzification
Flow
Cluster analysis
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description The design of hydrologically homogeneous regions (RHH) is an essential procedure to provide information essential to the modeling, planning, and management of water resources, especially when it is necessary to perform the regionalization of flows, aiming to estimate the water availability in sections without measurements. The definition of strategies for the management and conservation of natural resources depends on information obtained through the identification of RHH, also being one of the steps of a study of regionalization of flows. Thus, this work has the objective of identifying the RHH in the state of Paraná through the grouping method Fuzzy C-Means. A total of 9 variables were used for the 114 fluviometric stations, with 4 dependent variables related to the characteristic flows (annual average long-term flow (Qmld), minimum annual flow with seven days duration and 10-year return period (Q7,10), flow rates associated to the 95% (Q95) and 90% (Q90) permanencies) and 5 independent variables related to the morphometric characteristics of the station (drainage area (AD - m²), sum of drainage (SD - m) (LA - Lat and longitude - Long). From the principal components analysis (PCA), the variables Qmld, DD, Lat and Long were identified as the least representative, being discarded from the study, proceeding with the analysis using only the variables AD, SD, Q90, Q95, and Q7,10. The results were obtained using the Fuzzy C-Means for the chosen variables, and the smallest objective function was found for 4 Clusters in the study group, with index of and fuzzification (m) 1.7. Separating the fluviometric stations by clusters through degrees of pertinence, the largest number of stations were obtained in Cluster 3 (83 stations), followed by Cluster 4 (13 stations) and Clusters 1 and 2 (7 stations in each cluster), and only 4 stations were not inserted in any cluster, being classified as nebulae, where the groups were determined practically by the distribution of the AD and SD variables. The smaller areas of coverage, analyzed flows and the smaller amount of drainage in the coverage area of the stations were found in Cluster 3, considering they were well spread in the state of Paraná. Clusters 1 and 4 were intermediate among the other clusters in all parameters evaluated. The Fuzzy C-Means algorithm proved to be efficient for the grouping of fluviometric stations in the state of Paraná, where it was possible to find the characteristics of each cluster formed, without overlapping of data in the analyzed variables.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-06-15T17:07:21Z
dc.date.issued.fl_str_mv 2018-02-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Ana Claudia Guedes. Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná. 2018. 90 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br/handle/tede/3760
identifier_str_mv SILVA, Ana Claudia Guedes. Identificação de regiões hidrologicamente homogêneas por agrupamento fuzzy c-means no estado do Paraná. 2018. 90 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.
url http://tede.unioeste.br/handle/tede/3760
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.cnpq.fl_str_mv 9185445721588761555
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/3760/5/Ana+Claudia_Silva2018.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/3760/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/3760/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/3760/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/3760/1/license.txt
bitstream.checksum.fl_str_mv 83384ab7c02835c3d776f862defc84c1
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723398580011008