Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | https://tede.unioeste.br/handle/tede/6526 |
Resumo: | Classifying network traffic plays an important role in identifying which applications are being used by users on a data network. As a result, increasingly improved techniques are needed to identify increasingly diversified traffic. Classical approaches such as port identification or packet inspection are widely used to classify and analyze network traffic flows. However, in recent years, there has been an exponential growth in Internet traffic, due to the large increase in the number of users and the diversity of services. Technologies arising from Industry 4.0 such as IoT (Internet of Things), Blockchain and Big Data, have become very popular in recent years, and have encouraged investment in Software Defined Networks (SDN) architectures, which make the integration and convergence of these emerging technological concepts more flexible. Despite the benefits, the adoption of SDN brings new challenges, mainly in the field of cybersecurity, since new elements are inserted in the network. On the other hand, integration with IoT services, countless types of new devices and services, pose risks to security and network infrastructure. In recent years, we have witnessed the rise of Machine Learning in scientific research, with the considered most promising technique being the textitDeep Learning, which uses artificial neural networks of different architectures to the most diverse purposes. The present work proposes a traffic classification solution in SDN architecture using a multilayer Convolutional Neural Network. For this, statistical data collected from swiches Openflow are used as a way of characterizing the different categories of traffic. The proposed solution allowed the network traffic to be classified by identifying its applications with approximately 97.6% of accuracy. |
id |
UNIOESTE-1_2da242a99de297a74f437021ced3c1f4 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/6526 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Villwock, RosangelaVillwock, RosangelaMiloca, Simone AparecidaCasanova, DalcimarLeandro, Pereira2023-03-29T14:08:53Z2022-12-07Leandro, Pereira. Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN. 2022. 120 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel.https://tede.unioeste.br/handle/tede/6526Classifying network traffic plays an important role in identifying which applications are being used by users on a data network. As a result, increasingly improved techniques are needed to identify increasingly diversified traffic. Classical approaches such as port identification or packet inspection are widely used to classify and analyze network traffic flows. However, in recent years, there has been an exponential growth in Internet traffic, due to the large increase in the number of users and the diversity of services. Technologies arising from Industry 4.0 such as IoT (Internet of Things), Blockchain and Big Data, have become very popular in recent years, and have encouraged investment in Software Defined Networks (SDN) architectures, which make the integration and convergence of these emerging technological concepts more flexible. Despite the benefits, the adoption of SDN brings new challenges, mainly in the field of cybersecurity, since new elements are inserted in the network. On the other hand, integration with IoT services, countless types of new devices and services, pose risks to security and network infrastructure. In recent years, we have witnessed the rise of Machine Learning in scientific research, with the considered most promising technique being the textitDeep Learning, which uses artificial neural networks of different architectures to the most diverse purposes. The present work proposes a traffic classification solution in SDN architecture using a multilayer Convolutional Neural Network. For this, statistical data collected from swiches Openflow are used as a way of characterizing the different categories of traffic. The proposed solution allowed the network traffic to be classified by identifying its applications with approximately 97.6% of accuracy.A classificação de tráfego de rede possui um importante papel na identificação das aplicações que estão sendo utilizadas pelos usuários em uma rede de dados. Com isso tornam-se necessárias técnicas cada vez mais aprimoradas para identificar um tráfego cada vez mais diversificado. Abordagens clássicas como identificação de portas ou inspeção pacotes são amplamente utilizadas para classificar e analisar os fluxos de tráfego de rede. No entanto, nos últimos anos, houve um exponencial crescimento do tráfego da Internet, devido ao grande aumento no número de usuários e diversidades de serviços. Tecnologias advindas da Indústria 4.0 como Iot (Internet of Things), Blockchain e Big Data tem se popularizado muito nos últimos anos, fomentado o investimento em arquitetura de redes baseada em software, as SDN (do inglês, Software-definied Networks), que flexibilizam a integração e convergência destes emergentes conceitos tecnológicos. Apesar dos benefícios, a adoção das SDN traz novos desafios, principalmente no campo da segunça cibernética, já que são inseridos novos elementos na rede. Por outro lado a integração com serviços de Iot, incontáveis tipos de novos dispositivos e serviços, representam riscos à segurança e infraestrutura de rede. Nos últimos anos presenciamos a ascensão do Aprendizado de Máquina nas pesquisas científicas, sendo a técnica considerada mais promissora o Aprendizado Profundo (do inglês , Deep Learning), que usa redes neurais artificias de diversas arquiteturas para os mais diversos fins. O presente trabalho tem como proposta uma solução de classificação de tráfego em arquitetura SDN utilizando uma Rede Neural Convolucional de múltiplas camadas. Para isso são utilizados dados estatísticos coletados de equipamentos que suportam o protocolo Openflow como forma de caracterizar as diversas categorias de tráfego. A solução proposta permitiu com que o o tráfego de rede fosse classificado por meio da identificação de suas aplicações com aproximadamente 97, 6% de acurácia.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2023-03-29T14:08:53Z No. of bitstreams: 2 Leandro_Pereira.2022.pdf: 5490504 bytes, checksum: 34b6d771eeb4bc2065d844bf34df8382 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2023-03-29T14:08:53Z (GMT). No. of bitstreams: 2 Leandro_Pereira.2022.pdf: 5490504 bytes, checksum: 34b6d771eeb4bc2065d844bf34df8382 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2022-12-07application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Ciência da ComputaçãoUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessDeep LearningRedes Definidas por SoftwareClassificação de TráfegoDeep LearningSoftware-defined NetworkingTraffic ClassificationMÉTODOS EM COMPUTAÇÃO APLICADAUso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDNUse of Deep Learning Applied to Traffic Classification in SDN Architectureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis19749965330812744706006002214374442868382015reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALLeandro_Pereira.2022.pdfLeandro_Pereira.2022.pdfapplication/pdf5490504http://tede.unioeste.br:8080/tede/bitstream/tede/6526/5/Leandro_Pereira.2022.pdf34b6d771eeb4bc2065d844bf34df8382MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/6526/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6526/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6526/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6526/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/65262023-09-19 10:27:00.547oai:tede.unioeste.br:tede/6526Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2023-09-19T13:27Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN |
dc.title.alternative.eng.fl_str_mv |
Use of Deep Learning Applied to Traffic Classification in SDN Architecture |
title |
Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN |
spellingShingle |
Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN Leandro, Pereira Deep Learning Redes Definidas por Software Classificação de Tráfego Deep Learning Software-defined Networking Traffic Classification MÉTODOS EM COMPUTAÇÃO APLICADA |
title_short |
Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN |
title_full |
Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN |
title_fullStr |
Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN |
title_full_unstemmed |
Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN |
title_sort |
Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN |
author |
Leandro, Pereira |
author_facet |
Leandro, Pereira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Villwock, Rosangela |
dc.contributor.referee1.fl_str_mv |
Villwock, Rosangela |
dc.contributor.referee2.fl_str_mv |
Miloca, Simone Aparecida |
dc.contributor.referee3.fl_str_mv |
Casanova, Dalcimar |
dc.contributor.author.fl_str_mv |
Leandro, Pereira |
contributor_str_mv |
Villwock, Rosangela Villwock, Rosangela Miloca, Simone Aparecida Casanova, Dalcimar |
dc.subject.por.fl_str_mv |
Deep Learning Redes Definidas por Software Classificação de Tráfego |
topic |
Deep Learning Redes Definidas por Software Classificação de Tráfego Deep Learning Software-defined Networking Traffic Classification MÉTODOS EM COMPUTAÇÃO APLICADA |
dc.subject.eng.fl_str_mv |
Deep Learning Software-defined Networking Traffic Classification |
dc.subject.cnpq.fl_str_mv |
MÉTODOS EM COMPUTAÇÃO APLICADA |
description |
Classifying network traffic plays an important role in identifying which applications are being used by users on a data network. As a result, increasingly improved techniques are needed to identify increasingly diversified traffic. Classical approaches such as port identification or packet inspection are widely used to classify and analyze network traffic flows. However, in recent years, there has been an exponential growth in Internet traffic, due to the large increase in the number of users and the diversity of services. Technologies arising from Industry 4.0 such as IoT (Internet of Things), Blockchain and Big Data, have become very popular in recent years, and have encouraged investment in Software Defined Networks (SDN) architectures, which make the integration and convergence of these emerging technological concepts more flexible. Despite the benefits, the adoption of SDN brings new challenges, mainly in the field of cybersecurity, since new elements are inserted in the network. On the other hand, integration with IoT services, countless types of new devices and services, pose risks to security and network infrastructure. In recent years, we have witnessed the rise of Machine Learning in scientific research, with the considered most promising technique being the textitDeep Learning, which uses artificial neural networks of different architectures to the most diverse purposes. The present work proposes a traffic classification solution in SDN architecture using a multilayer Convolutional Neural Network. For this, statistical data collected from swiches Openflow are used as a way of characterizing the different categories of traffic. The proposed solution allowed the network traffic to be classified by identifying its applications with approximately 97.6% of accuracy. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-12-07 |
dc.date.accessioned.fl_str_mv |
2023-03-29T14:08:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Leandro, Pereira. Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN. 2022. 120 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel. |
dc.identifier.uri.fl_str_mv |
https://tede.unioeste.br/handle/tede/6526 |
identifier_str_mv |
Leandro, Pereira. Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN. 2022. 120 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel. |
url |
https://tede.unioeste.br/handle/tede/6526 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
1974996533081274470 |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/6526/5/Leandro_Pereira.2022.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/6526/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/6526/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/6526/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/6526/1/license.txt |
bitstream.checksum.fl_str_mv |
34b6d771eeb4bc2065d844bf34df8382 321f3992dd3875151d8801b773ab32ed d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723469116669952 |