Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN

Detalhes bibliográficos
Autor(a) principal: Leandro, Pereira
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: https://tede.unioeste.br/handle/tede/6526
Resumo: Classifying network traffic plays an important role in identifying which applications are being used by users on a data network. As a result, increasingly improved techniques are needed to identify increasingly diversified traffic. Classical approaches such as port identification or packet inspection are widely used to classify and analyze network traffic flows. However, in recent years, there has been an exponential growth in Internet traffic, due to the large increase in the number of users and the diversity of services. Technologies arising from Industry 4.0 such as IoT (Internet of Things), Blockchain and Big Data, have become very popular in recent years, and have encouraged investment in Software Defined Networks (SDN) architectures, which make the integration and convergence of these emerging technological concepts more flexible. Despite the benefits, the adoption of SDN brings new challenges, mainly in the field of cybersecurity, since new elements are inserted in the network. On the other hand, integration with IoT services, countless types of new devices and services, pose risks to security and network infrastructure. In recent years, we have witnessed the rise of Machine Learning in scientific research, with the considered most promising technique being the textitDeep Learning, which uses artificial neural networks of different architectures to the most diverse purposes. The present work proposes a traffic classification solution in SDN architecture using a multilayer Convolutional Neural Network. For this, statistical data collected from swiches Openflow are used as a way of characterizing the different categories of traffic. The proposed solution allowed the network traffic to be classified by identifying its applications with approximately 97.6% of accuracy.
id UNIOESTE-1_2da242a99de297a74f437021ced3c1f4
oai_identifier_str oai:tede.unioeste.br:tede/6526
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Villwock, RosangelaVillwock, RosangelaMiloca, Simone AparecidaCasanova, DalcimarLeandro, Pereira2023-03-29T14:08:53Z2022-12-07Leandro, Pereira. Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN. 2022. 120 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel.https://tede.unioeste.br/handle/tede/6526Classifying network traffic plays an important role in identifying which applications are being used by users on a data network. As a result, increasingly improved techniques are needed to identify increasingly diversified traffic. Classical approaches such as port identification or packet inspection are widely used to classify and analyze network traffic flows. However, in recent years, there has been an exponential growth in Internet traffic, due to the large increase in the number of users and the diversity of services. Technologies arising from Industry 4.0 such as IoT (Internet of Things), Blockchain and Big Data, have become very popular in recent years, and have encouraged investment in Software Defined Networks (SDN) architectures, which make the integration and convergence of these emerging technological concepts more flexible. Despite the benefits, the adoption of SDN brings new challenges, mainly in the field of cybersecurity, since new elements are inserted in the network. On the other hand, integration with IoT services, countless types of new devices and services, pose risks to security and network infrastructure. In recent years, we have witnessed the rise of Machine Learning in scientific research, with the considered most promising technique being the textitDeep Learning, which uses artificial neural networks of different architectures to the most diverse purposes. The present work proposes a traffic classification solution in SDN architecture using a multilayer Convolutional Neural Network. For this, statistical data collected from swiches Openflow are used as a way of characterizing the different categories of traffic. The proposed solution allowed the network traffic to be classified by identifying its applications with approximately 97.6% of accuracy.A classificação de tráfego de rede possui um importante papel na identificação das aplicações que estão sendo utilizadas pelos usuários em uma rede de dados. Com isso tornam-se necessárias técnicas cada vez mais aprimoradas para identificar um tráfego cada vez mais diversificado. Abordagens clássicas como identificação de portas ou inspeção pacotes são amplamente utilizadas para classificar e analisar os fluxos de tráfego de rede. No entanto, nos últimos anos, houve um exponencial crescimento do tráfego da Internet, devido ao grande aumento no número de usuários e diversidades de serviços. Tecnologias advindas da Indústria 4.0 como Iot (Internet of Things), Blockchain e Big Data tem se popularizado muito nos últimos anos, fomentado o investimento em arquitetura de redes baseada em software, as SDN (do inglês, Software-definied Networks), que flexibilizam a integração e convergência destes emergentes conceitos tecnológicos. Apesar dos benefícios, a adoção das SDN traz novos desafios, principalmente no campo da segunça cibernética, já que são inseridos novos elementos na rede. Por outro lado a integração com serviços de Iot, incontáveis tipos de novos dispositivos e serviços, representam riscos à segurança e infraestrutura de rede. Nos últimos anos presenciamos a ascensão do Aprendizado de Máquina nas pesquisas científicas, sendo a técnica considerada mais promissora o Aprendizado Profundo (do inglês , Deep Learning), que usa redes neurais artificias de diversas arquiteturas para os mais diversos fins. O presente trabalho tem como proposta uma solução de classificação de tráfego em arquitetura SDN utilizando uma Rede Neural Convolucional de múltiplas camadas. Para isso são utilizados dados estatísticos coletados de equipamentos que suportam o protocolo Openflow como forma de caracterizar as diversas categorias de tráfego. A solução proposta permitiu com que o o tráfego de rede fosse classificado por meio da identificação de suas aplicações com aproximadamente 97, 6% de acurácia.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2023-03-29T14:08:53Z No. of bitstreams: 2 Leandro_Pereira.2022.pdf: 5490504 bytes, checksum: 34b6d771eeb4bc2065d844bf34df8382 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2023-03-29T14:08:53Z (GMT). No. of bitstreams: 2 Leandro_Pereira.2022.pdf: 5490504 bytes, checksum: 34b6d771eeb4bc2065d844bf34df8382 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2022-12-07application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Ciência da ComputaçãoUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessDeep LearningRedes Definidas por SoftwareClassificação de TráfegoDeep LearningSoftware-defined NetworkingTraffic ClassificationMÉTODOS EM COMPUTAÇÃO APLICADAUso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDNUse of Deep Learning Applied to Traffic Classification in SDN Architectureinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis19749965330812744706006002214374442868382015reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALLeandro_Pereira.2022.pdfLeandro_Pereira.2022.pdfapplication/pdf5490504http://tede.unioeste.br:8080/tede/bitstream/tede/6526/5/Leandro_Pereira.2022.pdf34b6d771eeb4bc2065d844bf34df8382MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/6526/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6526/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6526/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6526/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/65262023-09-19 10:27:00.547oai:tede.unioeste.br:tede/6526Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2023-09-19T13:27Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN
dc.title.alternative.eng.fl_str_mv Use of Deep Learning Applied to Traffic Classification in SDN Architecture
title Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN
spellingShingle Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN
Leandro, Pereira
Deep Learning
Redes Definidas por Software
Classificação de Tráfego
Deep Learning
Software-defined Networking
Traffic Classification
MÉTODOS EM COMPUTAÇÃO APLICADA
title_short Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN
title_full Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN
title_fullStr Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN
title_full_unstemmed Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN
title_sort Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN
author Leandro, Pereira
author_facet Leandro, Pereira
author_role author
dc.contributor.advisor1.fl_str_mv Villwock, Rosangela
dc.contributor.referee1.fl_str_mv Villwock, Rosangela
dc.contributor.referee2.fl_str_mv Miloca, Simone Aparecida
dc.contributor.referee3.fl_str_mv Casanova, Dalcimar
dc.contributor.author.fl_str_mv Leandro, Pereira
contributor_str_mv Villwock, Rosangela
Villwock, Rosangela
Miloca, Simone Aparecida
Casanova, Dalcimar
dc.subject.por.fl_str_mv Deep Learning
Redes Definidas por Software
Classificação de Tráfego
topic Deep Learning
Redes Definidas por Software
Classificação de Tráfego
Deep Learning
Software-defined Networking
Traffic Classification
MÉTODOS EM COMPUTAÇÃO APLICADA
dc.subject.eng.fl_str_mv Deep Learning
Software-defined Networking
Traffic Classification
dc.subject.cnpq.fl_str_mv MÉTODOS EM COMPUTAÇÃO APLICADA
description Classifying network traffic plays an important role in identifying which applications are being used by users on a data network. As a result, increasingly improved techniques are needed to identify increasingly diversified traffic. Classical approaches such as port identification or packet inspection are widely used to classify and analyze network traffic flows. However, in recent years, there has been an exponential growth in Internet traffic, due to the large increase in the number of users and the diversity of services. Technologies arising from Industry 4.0 such as IoT (Internet of Things), Blockchain and Big Data, have become very popular in recent years, and have encouraged investment in Software Defined Networks (SDN) architectures, which make the integration and convergence of these emerging technological concepts more flexible. Despite the benefits, the adoption of SDN brings new challenges, mainly in the field of cybersecurity, since new elements are inserted in the network. On the other hand, integration with IoT services, countless types of new devices and services, pose risks to security and network infrastructure. In recent years, we have witnessed the rise of Machine Learning in scientific research, with the considered most promising technique being the textitDeep Learning, which uses artificial neural networks of different architectures to the most diverse purposes. The present work proposes a traffic classification solution in SDN architecture using a multilayer Convolutional Neural Network. For this, statistical data collected from swiches Openflow are used as a way of characterizing the different categories of traffic. The proposed solution allowed the network traffic to be classified by identifying its applications with approximately 97.6% of accuracy.
publishDate 2022
dc.date.issued.fl_str_mv 2022-12-07
dc.date.accessioned.fl_str_mv 2023-03-29T14:08:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Leandro, Pereira. Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN. 2022. 120 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/6526
identifier_str_mv Leandro, Pereira. Uso de Deep Learning Aplicado à Classificação de Tráfego em Arquitetura SDN. 2022. 120 f. Dissertação( Mestrado em Ciência da Computação) - Universidade Estadual do Oeste do Paraná, Cascavel.
url https://tede.unioeste.br/handle/tede/6526
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 1974996533081274470
dc.relation.confidence.fl_str_mv 600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/6526/5/Leandro_Pereira.2022.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/6526/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/6526/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/6526/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/6526/1/license.txt
bitstream.checksum.fl_str_mv 34b6d771eeb4bc2065d844bf34df8382
321f3992dd3875151d8801b773ab32ed
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723469116669952