Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | https://tede.unioeste.br/handle/tede/6656 |
Resumo: | In Brazil, financial credit operations, costing and agricultural insurance are the main policies to encourage the development of agriculture. According to the Manual de Crédito Rural [Rural Credit Manual] (MCR), the granting financial institution is responsible for monitoring and inspecting rural credit operations, authorizing the use of geoprocessing and remote sensing techniques for this purpose. The measurement and validation of the farmable area of the property is one of the information necessary for compliance with the MCR. This demand can be met with the use of data mining techniques in time series vegetation index (STIV) for the classification of annual crops. With this panorama in mind, the objective of this research was to map and estimate areas with annual agricultural crops using data mining and engineering techniques and resource extraction in time series vegetation index. The study area comprises the western region of the state of Bahia, Northeastern Brazil, due to the availability of the LEM+ Dataset with land use and land cover classes for the region. The general methodology is based on the process known as Knowledge Discovery in Databases (KDD). The KDD process contains 5 steps, as follows: 1st stage - data selection with 48 vegetation index images from the MODIS sensor of the Terra and Aqua satellites, between the period of 09/22/2019 and 09/21/2020; 2nd stage - pre-processing: division of STIV values by 10,000 and stacking in STIV temporal cube; 3rd stage - transformation: generation of 2 groups of images, one with STIV smoothing which utilized the Savitzky-Golay filter (SG), and the other with STIV simplification by extracting its trend component (TD) with the Seasonal-Trend Decomposition Procedure Based on Loess algorithm (STL), applying feature engineering and feature extraction techniques in order to build 25 images of derived attributes (AD) in each treatment; 4th stage - data mining: 73 images (STIV + AD) of each SG and TD treatment were employed, and 10 combinations of attributes were created containing STIV, basic ADs and polar ADs. The Boruta algorithm was used to select attributes with greater importance for the annual crops classification task and the Random Forest (RF) classifier was optimized with Grid Search Cross Validation, with the purpose of finding the best classification model; 5 th stage - evaluation and interpretation, statistics were extracted from the 10 combinations of attributes to measure Accuracy, Kappa and Mapping Precision. The most promising results were identified in combination 8, which had 73 attributes, namely the STIV generated with the trend component, 15 AD extracted with basic metrics and 10 AD generated with polar metrics, in which, with the Boruta algorithm, only 60 attributes were selected. The mask built with RF mapped 2.53 million hectares with annual crops in the study region. With an overestimation of 12.5% in relation to official Brazilian Institute of Geography and Statistics (IBGE) data, the mask obtained an Accuracy of 92%, Kappa of 86% and Precision of approximately 92.2%. From the Cadastro Ambiental Rural [Rural Environmental Registry] (CAR), a rural property was selected, and a simulation of an agricultural credit inspection process was carried out. The area of consolidated use of the property, which had 852.82 hectares, was compared with cases of mapping the area with annual crops. One of the cases obtained a mapped area of 848.145 hectares with an Accuracy of 99.22%, Kappa of 98.32% and an approximate Precision of 100%. This mapping case was performed by applying the RF model trained on STIV and AD images cropped for said rural property. In conclusion, the techniques applied in mapping areas with annual crops using data mining, feature engineering and feature extraction in STIV allow agility in territorial management processes and for the validation of information on rural properties in agricultural credit carried out by financial institutions. |
id |
UNIOESTE-1_4975e5547402302bcb02632d5940fcf5 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/6656 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Mercante, EriveltoJohann, Jerry AdrianiMercante, EriveltoAntunes, João Francisco GonçalvesMaggi, Marcio Furlanhttp://lattes.cnpq.br/4307205363746994Almeida, Luiz2023-05-30T13:57:19Z2023-02-17Almeida, Luiz. Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais. 2023. 79 f. Dissertação(Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.https://tede.unioeste.br/handle/tede/6656In Brazil, financial credit operations, costing and agricultural insurance are the main policies to encourage the development of agriculture. According to the Manual de Crédito Rural [Rural Credit Manual] (MCR), the granting financial institution is responsible for monitoring and inspecting rural credit operations, authorizing the use of geoprocessing and remote sensing techniques for this purpose. The measurement and validation of the farmable area of the property is one of the information necessary for compliance with the MCR. This demand can be met with the use of data mining techniques in time series vegetation index (STIV) for the classification of annual crops. With this panorama in mind, the objective of this research was to map and estimate areas with annual agricultural crops using data mining and engineering techniques and resource extraction in time series vegetation index. The study area comprises the western region of the state of Bahia, Northeastern Brazil, due to the availability of the LEM+ Dataset with land use and land cover classes for the region. The general methodology is based on the process known as Knowledge Discovery in Databases (KDD). The KDD process contains 5 steps, as follows: 1st stage - data selection with 48 vegetation index images from the MODIS sensor of the Terra and Aqua satellites, between the period of 09/22/2019 and 09/21/2020; 2nd stage - pre-processing: division of STIV values by 10,000 and stacking in STIV temporal cube; 3rd stage - transformation: generation of 2 groups of images, one with STIV smoothing which utilized the Savitzky-Golay filter (SG), and the other with STIV simplification by extracting its trend component (TD) with the Seasonal-Trend Decomposition Procedure Based on Loess algorithm (STL), applying feature engineering and feature extraction techniques in order to build 25 images of derived attributes (AD) in each treatment; 4th stage - data mining: 73 images (STIV + AD) of each SG and TD treatment were employed, and 10 combinations of attributes were created containing STIV, basic ADs and polar ADs. The Boruta algorithm was used to select attributes with greater importance for the annual crops classification task and the Random Forest (RF) classifier was optimized with Grid Search Cross Validation, with the purpose of finding the best classification model; 5 th stage - evaluation and interpretation, statistics were extracted from the 10 combinations of attributes to measure Accuracy, Kappa and Mapping Precision. The most promising results were identified in combination 8, which had 73 attributes, namely the STIV generated with the trend component, 15 AD extracted with basic metrics and 10 AD generated with polar metrics, in which, with the Boruta algorithm, only 60 attributes were selected. The mask built with RF mapped 2.53 million hectares with annual crops in the study region. With an overestimation of 12.5% in relation to official Brazilian Institute of Geography and Statistics (IBGE) data, the mask obtained an Accuracy of 92%, Kappa of 86% and Precision of approximately 92.2%. From the Cadastro Ambiental Rural [Rural Environmental Registry] (CAR), a rural property was selected, and a simulation of an agricultural credit inspection process was carried out. The area of consolidated use of the property, which had 852.82 hectares, was compared with cases of mapping the area with annual crops. One of the cases obtained a mapped area of 848.145 hectares with an Accuracy of 99.22%, Kappa of 98.32% and an approximate Precision of 100%. This mapping case was performed by applying the RF model trained on STIV and AD images cropped for said rural property. In conclusion, the techniques applied in mapping areas with annual crops using data mining, feature engineering and feature extraction in STIV allow agility in territorial management processes and for the validation of information on rural properties in agricultural credit carried out by financial institutions.No Brasil, as operações financeiras de crédito, custeio e seguro agrícola são as principais políticas de incentivo ao desenvolvimento da agricultura. De acordo com o Manual de Crédito Rural (MCR), a instituição financeira concedente é responsável pelo monitoramento e pela fiscalização das operações de crédito rural, autorizando a utilização de técnicas de geoprocessamento e sensoriamento remoto para essa finalidade. A aferição e validação da área agricultável do imóvel é uma das informações necessárias ao cumprimento do MCR. Essa demanda pode ser atendida com a utilização de técnicas de mineração de dados em séries temporais de índices de vegetação (STIV) para classificação de culturas anuais. O objetivo deste trabalho foi mapear e estimar áreas com culturas agrícolas anuais, utilizando mineração de dados e técnicas de engenharia e extração de recursos em séries temporais de índice de vegetação. A área de estudo compreende a região oeste do estado da Bahia, Nordeste do Brasil, devido à disponibilidade do Dataset LEM+ com classes de uso e cobertura da terra para a região. A metodologia geral segue o processo descoberta de conhecimento em banco de dados (KDD). O processo de KDD contém 5 etapas, sendo: 1ª etapa - seleção de dados com 48 imagens de índice de vegetação do sensor MODIS dos satélites Terra e Aqua, entre o período de 22/09/2019 e 21/09/2020; 2ª etapa - pré-processamento: divisão dos valores das STIV por 10.000 e empilhamento em cubo temporal de STIV; 3ª etapa - transformação: geração de 2 grupos de imagens, um com suavização da STIV com filtro Savitzky-Golay (SG) e o outro com simplificação da STIV, extraindo sua componente de tendência (TD) com o algoritmo de Decomposição Sazonal Baseado em Perda (STL), utilizando de técnicas de engenharia e extração de recursos para construção de 25 imagens de atributos derivados (AD) em cada tratamento; 4ª etapa - mineração de dados, foram utilizadas 73 imagens (STIV + AD) de cada tratamento SG e TD e criadas 10 combinações de atributos contendo STIV, AD básicos e AD polares. O algoritmo Boruta foi utilizado para seleção de atributos com maior importância para a tarefa de classificação das culturas anuais e o classificador Random forest (RF) otimizado com Grid search cross validation, para encontrar o melhor modelo de classificação; 5ª etapa - avaliação e interpretação, foram extraídas estatísticas das 10 combinações de atributos para aferição de acurácia, Kappa e precisão do mapeamento. Os resultados mais promissores foram identificados na combinação 8, que possuía 73 atributos, sendo eles a STIV gerada com o componente de tendência, 15 AD extraídos com métricas básicas e 10 AD gerados com métricas polares, em que, com o Boruta, foram selecionados apenas 60 atributos. A máscara construída com RF mapeou 2,53 milhões de hectares com culturas anuais na região do estudo. Com superestimativa de 12,5%, em relação aos dados oficiais do IBGE a máscara obteve acurácia de 92%, Kappa de 86% e precisão aproximada de 92,2%. Do Cadastro Ambiental Rural (CAR), foi selecionado um imóvel rural e realizada uma simulação de um processo na fiscalização de crédito agrícola. Foi comparada a área de uso consolidado do imóvel, de 852,82 hectares, com casos de mapeamento da área com culturas anuais. Um dos casos obteve área mapeada de 848,145 hectares com acurácia de 99,22%, Kappa de 98,32% e precisão aproximada de 100%. Esse caso de mapeamento foi realizado aplicando-se o modelo RF treinado em imagens de STIV e AD recortadas para o imóvel rural. As técnicas aplicadas no mapeamento de áreas com culturas anuais utilizando mineração de dados, engenharia e extração de atributos em STIV permitem agilidade em processos de gestão territorial e para validação de informações sobre imóveis rurais no crédito agrícola realizado por instituições financeiras.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2023-05-30T13:57:19Z No. of bitstreams: 2 Luiz_Almeida.2023.pdf: 4266122 bytes, checksum: 26c4f49883c3a0a1d95cd6269b68be41 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2023-05-30T13:57:19Z (GMT). No. of bitstreams: 2 Luiz_Almeida.2023.pdf: 4266122 bytes, checksum: 26c4f49883c3a0a1d95cd6269b68be41 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2023-02-17Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAprendizagem de máquinaMineração de dadosSensoriamento remotoRemote sensingMachine learningRata miningSISTEMAS BIOLÓGICOS E AGROINDUSTRIAISEngenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuaisFEATURE ENGINEERING AND FEATURE EXTRACTION IN TIME SERIES VEGETATION INDEX FOR MAPPING AREAS WITH ANNUAL CROPSinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-534769245041605212960060060022143744428683820152075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALLuiz_Almeida.2023.pdfLuiz_Almeida.2023.pdfapplication/pdf4266122http://tede.unioeste.br:8080/tede/bitstream/tede/6656/5/Luiz_Almeida.2023.pdf26c4f49883c3a0a1d95cd6269b68be41MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/6656/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6656/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6656/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6656/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/66562023-05-30 10:57:19.45oai:tede.unioeste.br:tede/6656Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2023-05-30T13:57:19Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais |
dc.title.alternative.eng.fl_str_mv |
FEATURE ENGINEERING AND FEATURE EXTRACTION IN TIME SERIES VEGETATION INDEX FOR MAPPING AREAS WITH ANNUAL CROPS |
title |
Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais |
spellingShingle |
Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais Almeida, Luiz Aprendizagem de máquina Mineração de dados Sensoriamento remoto Remote sensing Machine learning Rata mining SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS |
title_short |
Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais |
title_full |
Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais |
title_fullStr |
Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais |
title_full_unstemmed |
Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais |
title_sort |
Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais |
author |
Almeida, Luiz |
author_facet |
Almeida, Luiz |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Mercante, Erivelto |
dc.contributor.advisor-co1.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.referee1.fl_str_mv |
Mercante, Erivelto |
dc.contributor.referee2.fl_str_mv |
Antunes, João Francisco Gonçalves |
dc.contributor.referee3.fl_str_mv |
Maggi, Marcio Furlan |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4307205363746994 |
dc.contributor.author.fl_str_mv |
Almeida, Luiz |
contributor_str_mv |
Mercante, Erivelto Johann, Jerry Adriani Mercante, Erivelto Antunes, João Francisco Gonçalves Maggi, Marcio Furlan |
dc.subject.por.fl_str_mv |
Aprendizagem de máquina Mineração de dados Sensoriamento remoto Remote sensing |
topic |
Aprendizagem de máquina Mineração de dados Sensoriamento remoto Remote sensing Machine learning Rata mining SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS |
dc.subject.eng.fl_str_mv |
Machine learning Rata mining |
dc.subject.cnpq.fl_str_mv |
SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS |
description |
In Brazil, financial credit operations, costing and agricultural insurance are the main policies to encourage the development of agriculture. According to the Manual de Crédito Rural [Rural Credit Manual] (MCR), the granting financial institution is responsible for monitoring and inspecting rural credit operations, authorizing the use of geoprocessing and remote sensing techniques for this purpose. The measurement and validation of the farmable area of the property is one of the information necessary for compliance with the MCR. This demand can be met with the use of data mining techniques in time series vegetation index (STIV) for the classification of annual crops. With this panorama in mind, the objective of this research was to map and estimate areas with annual agricultural crops using data mining and engineering techniques and resource extraction in time series vegetation index. The study area comprises the western region of the state of Bahia, Northeastern Brazil, due to the availability of the LEM+ Dataset with land use and land cover classes for the region. The general methodology is based on the process known as Knowledge Discovery in Databases (KDD). The KDD process contains 5 steps, as follows: 1st stage - data selection with 48 vegetation index images from the MODIS sensor of the Terra and Aqua satellites, between the period of 09/22/2019 and 09/21/2020; 2nd stage - pre-processing: division of STIV values by 10,000 and stacking in STIV temporal cube; 3rd stage - transformation: generation of 2 groups of images, one with STIV smoothing which utilized the Savitzky-Golay filter (SG), and the other with STIV simplification by extracting its trend component (TD) with the Seasonal-Trend Decomposition Procedure Based on Loess algorithm (STL), applying feature engineering and feature extraction techniques in order to build 25 images of derived attributes (AD) in each treatment; 4th stage - data mining: 73 images (STIV + AD) of each SG and TD treatment were employed, and 10 combinations of attributes were created containing STIV, basic ADs and polar ADs. The Boruta algorithm was used to select attributes with greater importance for the annual crops classification task and the Random Forest (RF) classifier was optimized with Grid Search Cross Validation, with the purpose of finding the best classification model; 5 th stage - evaluation and interpretation, statistics were extracted from the 10 combinations of attributes to measure Accuracy, Kappa and Mapping Precision. The most promising results were identified in combination 8, which had 73 attributes, namely the STIV generated with the trend component, 15 AD extracted with basic metrics and 10 AD generated with polar metrics, in which, with the Boruta algorithm, only 60 attributes were selected. The mask built with RF mapped 2.53 million hectares with annual crops in the study region. With an overestimation of 12.5% in relation to official Brazilian Institute of Geography and Statistics (IBGE) data, the mask obtained an Accuracy of 92%, Kappa of 86% and Precision of approximately 92.2%. From the Cadastro Ambiental Rural [Rural Environmental Registry] (CAR), a rural property was selected, and a simulation of an agricultural credit inspection process was carried out. The area of consolidated use of the property, which had 852.82 hectares, was compared with cases of mapping the area with annual crops. One of the cases obtained a mapped area of 848.145 hectares with an Accuracy of 99.22%, Kappa of 98.32% and an approximate Precision of 100%. This mapping case was performed by applying the RF model trained on STIV and AD images cropped for said rural property. In conclusion, the techniques applied in mapping areas with annual crops using data mining, feature engineering and feature extraction in STIV allow agility in territorial management processes and for the validation of information on rural properties in agricultural credit carried out by financial institutions. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-05-30T13:57:19Z |
dc.date.issued.fl_str_mv |
2023-02-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Almeida, Luiz. Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais. 2023. 79 f. Dissertação(Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel. |
dc.identifier.uri.fl_str_mv |
https://tede.unioeste.br/handle/tede/6656 |
identifier_str_mv |
Almeida, Luiz. Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais. 2023. 79 f. Dissertação(Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel. |
url |
https://tede.unioeste.br/handle/tede/6656 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/6656/5/Luiz_Almeida.2023.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/6656/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/6656/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/6656/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/6656/1/license.txt |
bitstream.checksum.fl_str_mv |
26c4f49883c3a0a1d95cd6269b68be41 321f3992dd3875151d8801b773ab32ed d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723473406394368 |