Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais

Detalhes bibliográficos
Autor(a) principal: Almeida, Luiz
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: https://tede.unioeste.br/handle/tede/6656
Resumo: In Brazil, financial credit operations, costing and agricultural insurance are the main policies to encourage the development of agriculture. According to the Manual de Crédito Rural [Rural Credit Manual] (MCR), the granting financial institution is responsible for monitoring and inspecting rural credit operations, authorizing the use of geoprocessing and remote sensing techniques for this purpose. The measurement and validation of the farmable area of the property is one of the information necessary for compliance with the MCR. This demand can be met with the use of data mining techniques in time series vegetation index (STIV) for the classification of annual crops. With this panorama in mind, the objective of this research was to map and estimate areas with annual agricultural crops using data mining and engineering techniques and resource extraction in time series vegetation index. The study area comprises the western region of the state of Bahia, Northeastern Brazil, due to the availability of the LEM+ Dataset with land use and land cover classes for the region. The general methodology is based on the process known as Knowledge Discovery in Databases (KDD). The KDD process contains 5 steps, as follows: 1st stage - data selection with 48 vegetation index images from the MODIS sensor of the Terra and Aqua satellites, between the period of 09/22/2019 and 09/21/2020; 2nd stage - pre-processing: division of STIV values by 10,000 and stacking in STIV temporal cube; 3rd stage - transformation: generation of 2 groups of images, one with STIV smoothing which utilized the Savitzky-Golay filter (SG), and the other with STIV simplification by extracting its trend component (TD) with the Seasonal-Trend Decomposition Procedure Based on Loess algorithm (STL), applying feature engineering and feature extraction techniques in order to build 25 images of derived attributes (AD) in each treatment; 4th stage - data mining: 73 images (STIV + AD) of each SG and TD treatment were employed, and 10 combinations of attributes were created containing STIV, basic ADs and polar ADs. The Boruta algorithm was used to select attributes with greater importance for the annual crops classification task and the Random Forest (RF) classifier was optimized with Grid Search Cross Validation, with the purpose of finding the best classification model; 5 th stage - evaluation and interpretation, statistics were extracted from the 10 combinations of attributes to measure Accuracy, Kappa and Mapping Precision. The most promising results were identified in combination 8, which had 73 attributes, namely the STIV generated with the trend component, 15 AD extracted with basic metrics and 10 AD generated with polar metrics, in which, with the Boruta algorithm, only 60 attributes were selected. The mask built with RF mapped 2.53 million hectares with annual crops in the study region. With an overestimation of 12.5% in relation to official Brazilian Institute of Geography and Statistics (IBGE) data, the mask obtained an Accuracy of 92%, Kappa of 86% and Precision of approximately 92.2%. From the Cadastro Ambiental Rural [Rural Environmental Registry] (CAR), a rural property was selected, and a simulation of an agricultural credit inspection process was carried out. The area of consolidated use of the property, which had 852.82 hectares, was compared with cases of mapping the area with annual crops. One of the cases obtained a mapped area of 848.145 hectares with an Accuracy of 99.22%, Kappa of 98.32% and an approximate Precision of 100%. This mapping case was performed by applying the RF model trained on STIV and AD images cropped for said rural property. In conclusion, the techniques applied in mapping areas with annual crops using data mining, feature engineering and feature extraction in STIV allow agility in territorial management processes and for the validation of information on rural properties in agricultural credit carried out by financial institutions.
id UNIOESTE-1_4975e5547402302bcb02632d5940fcf5
oai_identifier_str oai:tede.unioeste.br:tede/6656
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Mercante, EriveltoJohann, Jerry AdrianiMercante, EriveltoAntunes, João Francisco GonçalvesMaggi, Marcio Furlanhttp://lattes.cnpq.br/4307205363746994Almeida, Luiz2023-05-30T13:57:19Z2023-02-17Almeida, Luiz. Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais. 2023. 79 f. Dissertação(Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.https://tede.unioeste.br/handle/tede/6656In Brazil, financial credit operations, costing and agricultural insurance are the main policies to encourage the development of agriculture. According to the Manual de Crédito Rural [Rural Credit Manual] (MCR), the granting financial institution is responsible for monitoring and inspecting rural credit operations, authorizing the use of geoprocessing and remote sensing techniques for this purpose. The measurement and validation of the farmable area of the property is one of the information necessary for compliance with the MCR. This demand can be met with the use of data mining techniques in time series vegetation index (STIV) for the classification of annual crops. With this panorama in mind, the objective of this research was to map and estimate areas with annual agricultural crops using data mining and engineering techniques and resource extraction in time series vegetation index. The study area comprises the western region of the state of Bahia, Northeastern Brazil, due to the availability of the LEM+ Dataset with land use and land cover classes for the region. The general methodology is based on the process known as Knowledge Discovery in Databases (KDD). The KDD process contains 5 steps, as follows: 1st stage - data selection with 48 vegetation index images from the MODIS sensor of the Terra and Aqua satellites, between the period of 09/22/2019 and 09/21/2020; 2nd stage - pre-processing: division of STIV values by 10,000 and stacking in STIV temporal cube; 3rd stage - transformation: generation of 2 groups of images, one with STIV smoothing which utilized the Savitzky-Golay filter (SG), and the other with STIV simplification by extracting its trend component (TD) with the Seasonal-Trend Decomposition Procedure Based on Loess algorithm (STL), applying feature engineering and feature extraction techniques in order to build 25 images of derived attributes (AD) in each treatment; 4th stage - data mining: 73 images (STIV + AD) of each SG and TD treatment were employed, and 10 combinations of attributes were created containing STIV, basic ADs and polar ADs. The Boruta algorithm was used to select attributes with greater importance for the annual crops classification task and the Random Forest (RF) classifier was optimized with Grid Search Cross Validation, with the purpose of finding the best classification model; 5 th stage - evaluation and interpretation, statistics were extracted from the 10 combinations of attributes to measure Accuracy, Kappa and Mapping Precision. The most promising results were identified in combination 8, which had 73 attributes, namely the STIV generated with the trend component, 15 AD extracted with basic metrics and 10 AD generated with polar metrics, in which, with the Boruta algorithm, only 60 attributes were selected. The mask built with RF mapped 2.53 million hectares with annual crops in the study region. With an overestimation of 12.5% in relation to official Brazilian Institute of Geography and Statistics (IBGE) data, the mask obtained an Accuracy of 92%, Kappa of 86% and Precision of approximately 92.2%. From the Cadastro Ambiental Rural [Rural Environmental Registry] (CAR), a rural property was selected, and a simulation of an agricultural credit inspection process was carried out. The area of consolidated use of the property, which had 852.82 hectares, was compared with cases of mapping the area with annual crops. One of the cases obtained a mapped area of 848.145 hectares with an Accuracy of 99.22%, Kappa of 98.32% and an approximate Precision of 100%. This mapping case was performed by applying the RF model trained on STIV and AD images cropped for said rural property. In conclusion, the techniques applied in mapping areas with annual crops using data mining, feature engineering and feature extraction in STIV allow agility in territorial management processes and for the validation of information on rural properties in agricultural credit carried out by financial institutions.No Brasil, as operações financeiras de crédito, custeio e seguro agrícola são as principais políticas de incentivo ao desenvolvimento da agricultura. De acordo com o Manual de Crédito Rural (MCR), a instituição financeira concedente é responsável pelo monitoramento e pela fiscalização das operações de crédito rural, autorizando a utilização de técnicas de geoprocessamento e sensoriamento remoto para essa finalidade. A aferição e validação da área agricultável do imóvel é uma das informações necessárias ao cumprimento do MCR. Essa demanda pode ser atendida com a utilização de técnicas de mineração de dados em séries temporais de índices de vegetação (STIV) para classificação de culturas anuais. O objetivo deste trabalho foi mapear e estimar áreas com culturas agrícolas anuais, utilizando mineração de dados e técnicas de engenharia e extração de recursos em séries temporais de índice de vegetação. A área de estudo compreende a região oeste do estado da Bahia, Nordeste do Brasil, devido à disponibilidade do Dataset LEM+ com classes de uso e cobertura da terra para a região. A metodologia geral segue o processo descoberta de conhecimento em banco de dados (KDD). O processo de KDD contém 5 etapas, sendo: 1ª etapa - seleção de dados com 48 imagens de índice de vegetação do sensor MODIS dos satélites Terra e Aqua, entre o período de 22/09/2019 e 21/09/2020; 2ª etapa - pré-processamento: divisão dos valores das STIV por 10.000 e empilhamento em cubo temporal de STIV; 3ª etapa - transformação: geração de 2 grupos de imagens, um com suavização da STIV com filtro Savitzky-Golay (SG) e o outro com simplificação da STIV, extraindo sua componente de tendência (TD) com o algoritmo de Decomposição Sazonal Baseado em Perda (STL), utilizando de técnicas de engenharia e extração de recursos para construção de 25 imagens de atributos derivados (AD) em cada tratamento; 4ª etapa - mineração de dados, foram utilizadas 73 imagens (STIV + AD) de cada tratamento SG e TD e criadas 10 combinações de atributos contendo STIV, AD básicos e AD polares. O algoritmo Boruta foi utilizado para seleção de atributos com maior importância para a tarefa de classificação das culturas anuais e o classificador Random forest (RF) otimizado com Grid search cross validation, para encontrar o melhor modelo de classificação; 5ª etapa - avaliação e interpretação, foram extraídas estatísticas das 10 combinações de atributos para aferição de acurácia, Kappa e precisão do mapeamento. Os resultados mais promissores foram identificados na combinação 8, que possuía 73 atributos, sendo eles a STIV gerada com o componente de tendência, 15 AD extraídos com métricas básicas e 10 AD gerados com métricas polares, em que, com o Boruta, foram selecionados apenas 60 atributos. A máscara construída com RF mapeou 2,53 milhões de hectares com culturas anuais na região do estudo. Com superestimativa de 12,5%, em relação aos dados oficiais do IBGE a máscara obteve acurácia de 92%, Kappa de 86% e precisão aproximada de 92,2%. Do Cadastro Ambiental Rural (CAR), foi selecionado um imóvel rural e realizada uma simulação de um processo na fiscalização de crédito agrícola. Foi comparada a área de uso consolidado do imóvel, de 852,82 hectares, com casos de mapeamento da área com culturas anuais. Um dos casos obteve área mapeada de 848,145 hectares com acurácia de 99,22%, Kappa de 98,32% e precisão aproximada de 100%. Esse caso de mapeamento foi realizado aplicando-se o modelo RF treinado em imagens de STIV e AD recortadas para o imóvel rural. As técnicas aplicadas no mapeamento de áreas com culturas anuais utilizando mineração de dados, engenharia e extração de atributos em STIV permitem agilidade em processos de gestão territorial e para validação de informações sobre imóveis rurais no crédito agrícola realizado por instituições financeiras.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2023-05-30T13:57:19Z No. of bitstreams: 2 Luiz_Almeida.2023.pdf: 4266122 bytes, checksum: 26c4f49883c3a0a1d95cd6269b68be41 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2023-05-30T13:57:19Z (GMT). No. of bitstreams: 2 Luiz_Almeida.2023.pdf: 4266122 bytes, checksum: 26c4f49883c3a0a1d95cd6269b68be41 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2023-02-17Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAprendizagem de máquinaMineração de dadosSensoriamento remotoRemote sensingMachine learningRata miningSISTEMAS BIOLÓGICOS E AGROINDUSTRIAISEngenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuaisFEATURE ENGINEERING AND FEATURE EXTRACTION IN TIME SERIES VEGETATION INDEX FOR MAPPING AREAS WITH ANNUAL CROPSinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-534769245041605212960060060022143744428683820152075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALLuiz_Almeida.2023.pdfLuiz_Almeida.2023.pdfapplication/pdf4266122http://tede.unioeste.br:8080/tede/bitstream/tede/6656/5/Luiz_Almeida.2023.pdf26c4f49883c3a0a1d95cd6269b68be41MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/6656/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6656/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/6656/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6656/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/66562023-05-30 10:57:19.45oai:tede.unioeste.br:tede/6656Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2023-05-30T13:57:19Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais
dc.title.alternative.eng.fl_str_mv FEATURE ENGINEERING AND FEATURE EXTRACTION IN TIME SERIES VEGETATION INDEX FOR MAPPING AREAS WITH ANNUAL CROPS
title Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais
spellingShingle Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais
Almeida, Luiz
Aprendizagem de máquina
Mineração de dados
Sensoriamento remoto
Remote sensing
Machine learning
Rata mining
SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS
title_short Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais
title_full Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais
title_fullStr Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais
title_full_unstemmed Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais
title_sort Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais
author Almeida, Luiz
author_facet Almeida, Luiz
author_role author
dc.contributor.advisor1.fl_str_mv Mercante, Erivelto
dc.contributor.advisor-co1.fl_str_mv Johann, Jerry Adriani
dc.contributor.referee1.fl_str_mv Mercante, Erivelto
dc.contributor.referee2.fl_str_mv Antunes, João Francisco Gonçalves
dc.contributor.referee3.fl_str_mv Maggi, Marcio Furlan
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4307205363746994
dc.contributor.author.fl_str_mv Almeida, Luiz
contributor_str_mv Mercante, Erivelto
Johann, Jerry Adriani
Mercante, Erivelto
Antunes, João Francisco Gonçalves
Maggi, Marcio Furlan
dc.subject.por.fl_str_mv Aprendizagem de máquina
Mineração de dados
Sensoriamento remoto
Remote sensing
topic Aprendizagem de máquina
Mineração de dados
Sensoriamento remoto
Remote sensing
Machine learning
Rata mining
SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS
dc.subject.eng.fl_str_mv Machine learning
Rata mining
dc.subject.cnpq.fl_str_mv SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS
description In Brazil, financial credit operations, costing and agricultural insurance are the main policies to encourage the development of agriculture. According to the Manual de Crédito Rural [Rural Credit Manual] (MCR), the granting financial institution is responsible for monitoring and inspecting rural credit operations, authorizing the use of geoprocessing and remote sensing techniques for this purpose. The measurement and validation of the farmable area of the property is one of the information necessary for compliance with the MCR. This demand can be met with the use of data mining techniques in time series vegetation index (STIV) for the classification of annual crops. With this panorama in mind, the objective of this research was to map and estimate areas with annual agricultural crops using data mining and engineering techniques and resource extraction in time series vegetation index. The study area comprises the western region of the state of Bahia, Northeastern Brazil, due to the availability of the LEM+ Dataset with land use and land cover classes for the region. The general methodology is based on the process known as Knowledge Discovery in Databases (KDD). The KDD process contains 5 steps, as follows: 1st stage - data selection with 48 vegetation index images from the MODIS sensor of the Terra and Aqua satellites, between the period of 09/22/2019 and 09/21/2020; 2nd stage - pre-processing: division of STIV values by 10,000 and stacking in STIV temporal cube; 3rd stage - transformation: generation of 2 groups of images, one with STIV smoothing which utilized the Savitzky-Golay filter (SG), and the other with STIV simplification by extracting its trend component (TD) with the Seasonal-Trend Decomposition Procedure Based on Loess algorithm (STL), applying feature engineering and feature extraction techniques in order to build 25 images of derived attributes (AD) in each treatment; 4th stage - data mining: 73 images (STIV + AD) of each SG and TD treatment were employed, and 10 combinations of attributes were created containing STIV, basic ADs and polar ADs. The Boruta algorithm was used to select attributes with greater importance for the annual crops classification task and the Random Forest (RF) classifier was optimized with Grid Search Cross Validation, with the purpose of finding the best classification model; 5 th stage - evaluation and interpretation, statistics were extracted from the 10 combinations of attributes to measure Accuracy, Kappa and Mapping Precision. The most promising results were identified in combination 8, which had 73 attributes, namely the STIV generated with the trend component, 15 AD extracted with basic metrics and 10 AD generated with polar metrics, in which, with the Boruta algorithm, only 60 attributes were selected. The mask built with RF mapped 2.53 million hectares with annual crops in the study region. With an overestimation of 12.5% in relation to official Brazilian Institute of Geography and Statistics (IBGE) data, the mask obtained an Accuracy of 92%, Kappa of 86% and Precision of approximately 92.2%. From the Cadastro Ambiental Rural [Rural Environmental Registry] (CAR), a rural property was selected, and a simulation of an agricultural credit inspection process was carried out. The area of consolidated use of the property, which had 852.82 hectares, was compared with cases of mapping the area with annual crops. One of the cases obtained a mapped area of 848.145 hectares with an Accuracy of 99.22%, Kappa of 98.32% and an approximate Precision of 100%. This mapping case was performed by applying the RF model trained on STIV and AD images cropped for said rural property. In conclusion, the techniques applied in mapping areas with annual crops using data mining, feature engineering and feature extraction in STIV allow agility in territorial management processes and for the validation of information on rural properties in agricultural credit carried out by financial institutions.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-05-30T13:57:19Z
dc.date.issued.fl_str_mv 2023-02-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Almeida, Luiz. Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais. 2023. 79 f. Dissertação(Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/6656
identifier_str_mv Almeida, Luiz. Engenharia e extração de recursos em séries temporais de índice de vegetação para mapeamento de área com culturas anuais. 2023. 79 f. Dissertação(Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.
url https://tede.unioeste.br/handle/tede/6656
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/6656/5/Luiz_Almeida.2023.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/6656/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/6656/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/6656/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/6656/1/license.txt
bitstream.checksum.fl_str_mv 26c4f49883c3a0a1d95cd6269b68be41
321f3992dd3875151d8801b773ab32ed
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723473406394368