Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial

Detalhes bibliográficos
Autor(a) principal: Silva, Edilza Martins da
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: https://tede.unioeste.br/handle/tede/6870
Resumo: Climate change affects the productivity of several agricultural crops, including soybean, which has a significant impact on Brazil’s economy. Therefore, investigating the influence of meteorological and spectral variables on soybean productivity in soybean-growing regions in the state of Paraná, Brazil is fundamental for the development of strategies aimed at increasing the productivity of this crop. Thus, the general objective of the study was to analyze the effects on soybean productivity (t ha-1) in the state of Paraná, Brazil, of measures associated with the following meteorological variables: accumulated rainfall (mm); average, minimum and maximum air temperatures (°C); potential evapotranspiration (mm); global solar radiation (MJm-2 day-1); and the spectral variable Enhanced Vegetation Index (EVI) during the phenological phases of soybean, at a spatial scale of 9 × 9 km, considering the time series from 2010/2011 to 2019/2020. The dissertation is organized in the format of scientific papers: in the first article, spatial panel data modeling was used, which considers spatial and temporal information. Measures of explanatory variables were considered in overlapping intervals during the crop’s phenological phases, and the four municipalities with the highest soybean productivity values were analyzed. In the second article, in spatial panel data modeling, measurements of explanatory variables generated without overlap during the crop’s phenological phases were considered, and the mesoregion with the highest productivity values in the state during the considered time series was analyzed. Finally, a comparison was made between the results of Article 1 and Article 2 in terms of explanatory variables generated with and without overlap in the phenological cycle. The results showed a spatial dependence of soybean average productivity in the state, meaning that the productivity of a specific virtual station (EV) is correlated with the productivity of neighboring EVs. Furthermore, the spatial autoregressive (SAR) model with fixed effects was the best-estimated model. In both articles, results showed similarity in measures associated with the precipitation variable, in the interval containing the flowering and grain-filling phase, potential evapotranspiration in measures associated with the interval close to the harvest date, and EVI with higher values in intervals close to the date of maximum vegetative development (DMDV) and near the harvest date had an impact on soybean productivity. Finally, the average temperature variable in intervals from the seeding date up to 16 days before DMDV and close to the harvest date had a negative impact on soybean productivity. Therefore, the use of spatial panel data modeling with information on meteorological variables and EVI in relation to soybean productivity may be viable for understanding soybean productivity variation in the state of Paraná.
id UNIOESTE-1_4decd4c8addb13cfc989f60b9d66491e
oai_identifier_str oai:tede.unioeste.br:tede/6870
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Guedes, Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Guedes, Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864Dalposso, Gustavo Henriquehttp://lattes.cnpq.br/8040071176709565Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Cima, Elizabeth Gironhttp://lattes.cnpq.br/6425282643235095Andrade, Adriana Uquillashttp://lattes.cnpq.br/9391362763823404http://lattes.cnpq.br/6673001711137841Silva, Edilza Martins da2023-10-27T13:29:08Z2023-08-14SILVA, Edilza Martins da. Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial. 2023. 137 f. Tese (Doutorado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.https://tede.unioeste.br/handle/tede/6870Climate change affects the productivity of several agricultural crops, including soybean, which has a significant impact on Brazil’s economy. Therefore, investigating the influence of meteorological and spectral variables on soybean productivity in soybean-growing regions in the state of Paraná, Brazil is fundamental for the development of strategies aimed at increasing the productivity of this crop. Thus, the general objective of the study was to analyze the effects on soybean productivity (t ha-1) in the state of Paraná, Brazil, of measures associated with the following meteorological variables: accumulated rainfall (mm); average, minimum and maximum air temperatures (°C); potential evapotranspiration (mm); global solar radiation (MJm-2 day-1); and the spectral variable Enhanced Vegetation Index (EVI) during the phenological phases of soybean, at a spatial scale of 9 × 9 km, considering the time series from 2010/2011 to 2019/2020. The dissertation is organized in the format of scientific papers: in the first article, spatial panel data modeling was used, which considers spatial and temporal information. Measures of explanatory variables were considered in overlapping intervals during the crop’s phenological phases, and the four municipalities with the highest soybean productivity values were analyzed. In the second article, in spatial panel data modeling, measurements of explanatory variables generated without overlap during the crop’s phenological phases were considered, and the mesoregion with the highest productivity values in the state during the considered time series was analyzed. Finally, a comparison was made between the results of Article 1 and Article 2 in terms of explanatory variables generated with and without overlap in the phenological cycle. The results showed a spatial dependence of soybean average productivity in the state, meaning that the productivity of a specific virtual station (EV) is correlated with the productivity of neighboring EVs. Furthermore, the spatial autoregressive (SAR) model with fixed effects was the best-estimated model. In both articles, results showed similarity in measures associated with the precipitation variable, in the interval containing the flowering and grain-filling phase, potential evapotranspiration in measures associated with the interval close to the harvest date, and EVI with higher values in intervals close to the date of maximum vegetative development (DMDV) and near the harvest date had an impact on soybean productivity. Finally, the average temperature variable in intervals from the seeding date up to 16 days before DMDV and close to the harvest date had a negative impact on soybean productivity. Therefore, the use of spatial panel data modeling with information on meteorological variables and EVI in relation to soybean productivity may be viable for understanding soybean productivity variation in the state of Paraná.As mudanças climáticas afetam a produtividade de diversas culturas agrícolas, incluindo a da soja, que tem grande influência na economia do Brasil. Portanto, investigar a influência das variáveis meteorológicas e espectrais na produtividade da soja em regiões sojícolas no estado do Paraná – Brasil é fundamental para o desenvolvimento de estratégias que visem ao aumento da produtividade dessa cultura. Assim, o objetivo geral desta pesquisa foi analisar os efeitos sobre a produtividade da soja (t ha-1), no estado do Paraná - Brasil, de medidas associadas às seguintes variáveis meteorológicas: precipitação pluvial acumulada (mm), temperatura média, mínima e máxima do ar (°C), evapotranspiração potencial (mm), radiação solar global (MJm-2 dia-1) e a variável espectral Índice de Vegetação Melhorado (EVI) durante as fases fenológicas da soja, em escala espacial de 9 × 9 km, considerando a série temporal de 2010/2011 a 2019/2020. A tese está organizada no formato de artigos científicos: no primeiro artigo utilizou-se a modelagem de dados em painel espacial, considerando informações espaciais e temporais, avalia as medidas das variáveis explicativas em intervalos com sobreposição durante as fases fenológicas da cultura, analisados nos quatro municípios paranaenses com maiores valores da produtividade da soja. No segundo artigo, na modelagem de dados em painel espacial consideraram-se as medidas das variáveis explicativas geradas sem sobreposição durante as fases fenológicas da cultura, na mesorregião com maiores valores de produtividade do estado durante a série temporal considerada. Por fim, realizou-se um estudo comparativo entre os resultados apresentados no artigo 1 e no artigo 2, em relação às variáveis explicativas geradas com e sem sobreposição no ciclo fenológico. Os resultados mostraram uma dependência espacial da produtividade média da soja no estado, ou seja, a produtividade de uma determinada estação virtual (EV) está correlacionada com a produtividade das Ev’s vizinhas. Além disso, o modelo autorregressivo espacial (SAR) de efeitos fixos, foi o melhor modelo estimado. Nos dois estudos, os resultados mostraram semelhança nas medidas associadas à variável precipitação, no intervalo que contêm a fase de florescimento e do enchimento de grãos, a evapotranspiração potencial em medidas associadas ao intervalo próximo à data da colheita, e o EVI com maiores valores nos intervalos próximos da data do máximo desenvolvimento vegetativo (DMDV) e próximo da data da colheita impactaram a produtividade da soja. Por fim, a variável temperatura média em intervalos da data da semeadura até 16 dias antes do DMDV e próximo à data da colheita impactaram negativamente a produtividade da soja. Sendo assim, a utilização da modelagem de dados de painel espacial com informações das variáveis meteorológicas e EVI, em relação à produtividade da soja, pode ser viável para o entendimento da variação da produtividade da soja no estado do Paraná.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2023-10-27T13:29:08Z No. of bitstreams: 1 Edilza_Silva2023.pdf: 4535125 bytes, checksum: de380abfcc191a80e26c5ee35ed016b6 (MD5)Made available in DSpace on 2023-10-27T13:29:08Z (GMT). No. of bitstreams: 1 Edilza_Silva2023.pdf: 4535125 bytes, checksum: de380abfcc191a80e26c5ee35ed016b6 (MD5) Previous issue date: 2023-08-14Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAgricultura de precisãoBig DataECMWF/ERA5-LandÍndice de MoranMudanças ClimáticasPrecision agricultureBig dataECMWF/ERA5-LandMoran indexClimate changeSistemas biológicos e AgroindustriaisProdutividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacialSoybean productivity associated with meteorological and spectral variables in the state of Paraná: spatial panel data modelinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-534769245041605212960060060022143744428683820152075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALEdilza_Silva2023.pdfEdilza_Silva2023.pdfapplication/pdf4535125http://tede.unioeste.br:8080/tede/bitstream/tede/6870/2/Edilza_Silva2023.pdfde380abfcc191a80e26c5ee35ed016b6MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6870/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/68702024-01-08 09:22:16.492oai:tede.unioeste.br:tede/6870Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2024-01-08T12:22:16Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial
dc.title.alternative.eng.fl_str_mv Soybean productivity associated with meteorological and spectral variables in the state of Paraná: spatial panel data modeling
title Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial
spellingShingle Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial
Silva, Edilza Martins da
Agricultura de precisão
Big Data
ECMWF/ERA5-Land
Índice de Moran
Mudanças Climáticas
Precision agriculture
Big data
ECMWF/ERA5-Land
Moran index
Climate change
Sistemas biológicos e Agroindustriais
title_short Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial
title_full Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial
title_fullStr Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial
title_full_unstemmed Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial
title_sort Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial
author Silva, Edilza Martins da
author_facet Silva, Edilza Martins da
author_role author
dc.contributor.advisor1.fl_str_mv Guedes, Luciana Pagliosa Carvalho
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3195220544719864
dc.contributor.advisor-co1.fl_str_mv Johann, Jerry Adriani
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.referee1.fl_str_mv Guedes, Luciana Pagliosa Carvalho
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3195220544719864
dc.contributor.referee2.fl_str_mv Dalposso, Gustavo Henrique
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8040071176709565
dc.contributor.referee3.fl_str_mv Opazo, Miguel Angel Uribe
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4179444121729414
dc.contributor.referee4.fl_str_mv Cima, Elizabeth Giron
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/6425282643235095
dc.contributor.referee5.fl_str_mv Andrade, Adriana Uquillas
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/9391362763823404
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6673001711137841
dc.contributor.author.fl_str_mv Silva, Edilza Martins da
contributor_str_mv Guedes, Luciana Pagliosa Carvalho
Johann, Jerry Adriani
Guedes, Luciana Pagliosa Carvalho
Dalposso, Gustavo Henrique
Opazo, Miguel Angel Uribe
Cima, Elizabeth Giron
Andrade, Adriana Uquillas
dc.subject.por.fl_str_mv Agricultura de precisão
Big Data
ECMWF/ERA5-Land
Índice de Moran
Mudanças Climáticas
topic Agricultura de precisão
Big Data
ECMWF/ERA5-Land
Índice de Moran
Mudanças Climáticas
Precision agriculture
Big data
ECMWF/ERA5-Land
Moran index
Climate change
Sistemas biológicos e Agroindustriais
dc.subject.eng.fl_str_mv Precision agriculture
Big data
ECMWF/ERA5-Land
Moran index
Climate change
dc.subject.cnpq.fl_str_mv Sistemas biológicos e Agroindustriais
description Climate change affects the productivity of several agricultural crops, including soybean, which has a significant impact on Brazil’s economy. Therefore, investigating the influence of meteorological and spectral variables on soybean productivity in soybean-growing regions in the state of Paraná, Brazil is fundamental for the development of strategies aimed at increasing the productivity of this crop. Thus, the general objective of the study was to analyze the effects on soybean productivity (t ha-1) in the state of Paraná, Brazil, of measures associated with the following meteorological variables: accumulated rainfall (mm); average, minimum and maximum air temperatures (°C); potential evapotranspiration (mm); global solar radiation (MJm-2 day-1); and the spectral variable Enhanced Vegetation Index (EVI) during the phenological phases of soybean, at a spatial scale of 9 × 9 km, considering the time series from 2010/2011 to 2019/2020. The dissertation is organized in the format of scientific papers: in the first article, spatial panel data modeling was used, which considers spatial and temporal information. Measures of explanatory variables were considered in overlapping intervals during the crop’s phenological phases, and the four municipalities with the highest soybean productivity values were analyzed. In the second article, in spatial panel data modeling, measurements of explanatory variables generated without overlap during the crop’s phenological phases were considered, and the mesoregion with the highest productivity values in the state during the considered time series was analyzed. Finally, a comparison was made between the results of Article 1 and Article 2 in terms of explanatory variables generated with and without overlap in the phenological cycle. The results showed a spatial dependence of soybean average productivity in the state, meaning that the productivity of a specific virtual station (EV) is correlated with the productivity of neighboring EVs. Furthermore, the spatial autoregressive (SAR) model with fixed effects was the best-estimated model. In both articles, results showed similarity in measures associated with the precipitation variable, in the interval containing the flowering and grain-filling phase, potential evapotranspiration in measures associated with the interval close to the harvest date, and EVI with higher values in intervals close to the date of maximum vegetative development (DMDV) and near the harvest date had an impact on soybean productivity. Finally, the average temperature variable in intervals from the seeding date up to 16 days before DMDV and close to the harvest date had a negative impact on soybean productivity. Therefore, the use of spatial panel data modeling with information on meteorological variables and EVI in relation to soybean productivity may be viable for understanding soybean productivity variation in the state of Paraná.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-10-27T13:29:08Z
dc.date.issued.fl_str_mv 2023-08-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Edilza Martins da. Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial. 2023. 137 f. Tese (Doutorado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/6870
identifier_str_mv SILVA, Edilza Martins da. Produtividade da soja associada as variáveis meteorológicas e espectral no Estado do Paraná: modelagem de dados de painel espacial. 2023. 137 f. Tese (Doutorado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.
url https://tede.unioeste.br/handle/tede/6870
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/6870/2/Edilza_Silva2023.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/6870/1/license.txt
bitstream.checksum.fl_str_mv de380abfcc191a80e26c5ee35ed016b6
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723478441656320