Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom

Detalhes bibliográficos
Autor(a) principal: Albonico, Guilherme Antônio Mantovani
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br/handle/tede/2998
Resumo: Breast cancer is one of the diseases that hit most women in the world. Due to the large number of factors associated with this type of disease, early detection is the best way to fight it. Mammography is the main imaging exam currently used for detection, since it is able to identify the presence of microcalcifications, which are a key indicator of the presence of cancer. As a complement exam, breast ultrasonography has also been widely used because of the large number of inconclusive mammograms and the difficulty of diagnosing younger women. However, the interpretation of ultrasound images is quite dependent on the experience of the doctor in charge of the diagnosis. To aid in the interpretation of these images, Computer-Aided Diagnosis (CAD) systems have appeared, and it seeks to provide a second opinion for medical specialists. In this work, the attribute selection and classification stages presented in these systems were developed. A wrapper approach with a search strategy based in genetic algorithms, and two filter approaches, the Welch's t test and the ReliefF algorithm was developed. To evaluate the subsets performance, a Multilayer Perceptron (MLP) neural network, with backpropagation learning algorithm was developed as a classifier. The metric used to evaluate the classification performance of each subset of attributes was the area of under the Receiver Operating Characteristic curve (Az).The used database has 541 images, with 314 benign lesions and 227 malignant lesions with a biopsyproven diagnosis. In addition, the database contains the manual segmentation of these images performed by a specialist physician and 22 morphological extracted attributes. The filter techniques results showed that some attributes alone are able to obtain good classification results, such as the depth/width ratio of the lesion, reaching 0.731 for Az. Besides that, the best results were found through the wrapper strategy, in which a value of 0.835 was obtained for Az using only eight of the 22 attributes, demonstrating the importance of these steps in this type of CAD system, increasing the final performance.
id UNIOESTE-1_55b09c8c49d39ff9e67fd34bbaf05df9
oai_identifier_str oai:tede.unioeste.br:tede/2998
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Kauati, Adriana Tokuhashihttp://lattes.cnpq.br/4808167232091229Pereira, Wagner Coelho de Albuquerquehttp://lattes.cnpq.br/3554447149096438Kauati, Adriana Tokuhashihttp://lattes.cnpq.br/4808167232091229Pereira, Wagner Coelho de Albuquerquehttp://lattes.cnpq.br/3554447149096438Battistella, Sandrohttp://lattes.cnpq.br/5487197769616594Campos, Marcello Luiz Rodrigues dehttp://lattes.cnpq.br/2402401592333107http://lattes.cnpq.br/8583142453995305Albonico, Guilherme Antônio Mantovani2017-09-04T12:02:58Z2017-03-30AlBONICO, Guilherme Antônio Mantovani. Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom. 2017. 77 p. Dissertação (Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, 2017.http://tede.unioeste.br/handle/tede/2998Breast cancer is one of the diseases that hit most women in the world. Due to the large number of factors associated with this type of disease, early detection is the best way to fight it. Mammography is the main imaging exam currently used for detection, since it is able to identify the presence of microcalcifications, which are a key indicator of the presence of cancer. As a complement exam, breast ultrasonography has also been widely used because of the large number of inconclusive mammograms and the difficulty of diagnosing younger women. However, the interpretation of ultrasound images is quite dependent on the experience of the doctor in charge of the diagnosis. To aid in the interpretation of these images, Computer-Aided Diagnosis (CAD) systems have appeared, and it seeks to provide a second opinion for medical specialists. In this work, the attribute selection and classification stages presented in these systems were developed. A wrapper approach with a search strategy based in genetic algorithms, and two filter approaches, the Welch's t test and the ReliefF algorithm was developed. To evaluate the subsets performance, a Multilayer Perceptron (MLP) neural network, with backpropagation learning algorithm was developed as a classifier. The metric used to evaluate the classification performance of each subset of attributes was the area of under the Receiver Operating Characteristic curve (Az).The used database has 541 images, with 314 benign lesions and 227 malignant lesions with a biopsyproven diagnosis. In addition, the database contains the manual segmentation of these images performed by a specialist physician and 22 morphological extracted attributes. The filter techniques results showed that some attributes alone are able to obtain good classification results, such as the depth/width ratio of the lesion, reaching 0.731 for Az. Besides that, the best results were found through the wrapper strategy, in which a value of 0.835 was obtained for Az using only eight of the 22 attributes, demonstrating the importance of these steps in this type of CAD system, increasing the final performance.O câncer de mama é uma das doenças que mais atingem as mulheres no mundo. Devido à grande quantidade de fatores associados com este tipo de doença, a detecção precoce é a melhor forma de combatê-la. A mamografia é o principal exame utilizado atualmente para a detecção, pois é capaz de identificar a presença de microcalcificações, as quais são um indicador chave da presença de câncer. Como complemento a este exame, a ultrassonografia da mama vem sendo bastante utilizada devido ao grande número de mamogramas inconclusivos e à dificuldade de diagnóstico de mulheres mais jovens. Entretanto a interpretação das imagens de ultrassom provenientes destes exames é bastante dependente da experiência do médico que realiza o diagnóstico. Para auxiliar na interpretação destes exames, surgiram os sistemas Computer-Aided Diagnosis (CAD) que buscam fornecer uma segunda opinião para os médicos especialistas. Neste trabalho, foram desenvolvidas as etapas de seleção de atributos e de classificação presentes nestes sistemas. Foram realizadas abordagem wrapper com estratégia de busca baseada em algoritmos genéticos e duas estratégias em filtro, o teste t de Welch e o algoritmo ReliefF. Para avaliar o desempenho dos subconjuntos foi elaborado um classificador do tipo Multilayer Perceptron (MLP), com algoritmo de aprendizagem backpropagation. A métrica utilizada para avaliar o desempenho de classificação de cada subconjunto de atributos foi a área sob a curva Receiver Operating Characteristic (Az). O banco de dados utilizado, consiste de 541 imagens, sendo 314 lesões benignas e 227 lesões malignas com diagnóstico comprovado por biópsia. O banco de dados contém a segmentação manual destas imagens realizada por um médico especialista e 22 atributos morfológicos previamente extraídos. Os resultados encontrados pelas técnicas em filtro mostraram que alguns atributos isoladamente são capazes de obter bons resultados na classificação, como por exemplo, a razão profundidade/largura da lesão, obtendo um valor de 0,731 para Az. Apesar disso, os melhores resultados foram encontrados através da estratégia wrapper, tendo sido obtido um valor de 0,835 para Az utilizando apenas oito dos 22 atributos, demonstrando assim a importância destas etapas neste tipo de sistema CAD, aumentando o desempenho final.Submitted by Miriam Lucas (miriam.lucas@unioeste.br) on 2017-09-04T12:02:58Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Guilherme_A_Mantovani_Albonico_2017.pdf: 5657505 bytes, checksum: e0002a5923940dc5d0866cdf6f30a5ae (MD5)Made available in DSpace on 2017-09-04T12:02:58Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Guilherme_A_Mantovani_Albonico_2017.pdf: 5657505 bytes, checksum: e0002a5923940dc5d0866cdf6f30a5ae (MD5) Previous issue date: 2017-03-30Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor8774263440366006536500Universidade Estadual do Oeste do ParanáFoz do IguaçuPrograma de Pós-Graduação em Engenharia Elétrica e ComputaçãoUNIOESTEBrasilCentro de Engenharias e Ciências Exatashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCâncer de mamaUltrassomCADBreast cancerUltrasoundSistemas dinâmicos e energéticosSeleção de atributos e classificação automática de lesões mamárias em imagens de ultrassomSelection of attributes and automatic classification of breast lesions in ultrasound imagesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1040084669565072649600600600-77344021240821469222075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTECC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/2998/6/license_url4afdbb8c545fd630ea7db775da747b2fMD56license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/2998/7/license_textd41d8cd98f00b204e9800998ecf8427eMD57license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/2998/8/license_rdfd41d8cd98f00b204e9800998ecf8427eMD58ORIGINALGuilherme_A_Mantovani_Albonico_2017.pdfGuilherme_A_Mantovani_Albonico_2017.pdfapplication/pdf5657505http://tede.unioeste.br:8080/tede/bitstream/tede/2998/5/Guilherme_A_Mantovani_Albonico_2017.pdfe0002a5923940dc5d0866cdf6f30a5aeMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/2998/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/29982017-11-07 15:28:55.251oai:tede.unioeste.br:tede/2998Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2017-11-07T17:28:55Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom
dc.title.alternative.eng.fl_str_mv Selection of attributes and automatic classification of breast lesions in ultrasound images
title Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom
spellingShingle Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom
Albonico, Guilherme Antônio Mantovani
Câncer de mama
Ultrassom
CAD
Breast cancer
Ultrasound
Sistemas dinâmicos e energéticos
title_short Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom
title_full Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom
title_fullStr Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom
title_full_unstemmed Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom
title_sort Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom
author Albonico, Guilherme Antônio Mantovani
author_facet Albonico, Guilherme Antônio Mantovani
author_role author
dc.contributor.advisor1.fl_str_mv Kauati, Adriana Tokuhashi
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4808167232091229
dc.contributor.advisor-co1.fl_str_mv Pereira, Wagner Coelho de Albuquerque
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3554447149096438
dc.contributor.referee1.fl_str_mv Kauati, Adriana Tokuhashi
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/4808167232091229
dc.contributor.referee2.fl_str_mv Pereira, Wagner Coelho de Albuquerque
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3554447149096438
dc.contributor.referee3.fl_str_mv Battistella, Sandro
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5487197769616594
dc.contributor.referee4.fl_str_mv Campos, Marcello Luiz Rodrigues de
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/2402401592333107
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8583142453995305
dc.contributor.author.fl_str_mv Albonico, Guilherme Antônio Mantovani
contributor_str_mv Kauati, Adriana Tokuhashi
Pereira, Wagner Coelho de Albuquerque
Kauati, Adriana Tokuhashi
Pereira, Wagner Coelho de Albuquerque
Battistella, Sandro
Campos, Marcello Luiz Rodrigues de
dc.subject.por.fl_str_mv Câncer de mama
Ultrassom
CAD
topic Câncer de mama
Ultrassom
CAD
Breast cancer
Ultrasound
Sistemas dinâmicos e energéticos
dc.subject.eng.fl_str_mv Breast cancer
Ultrasound
dc.subject.cnpq.fl_str_mv Sistemas dinâmicos e energéticos
description Breast cancer is one of the diseases that hit most women in the world. Due to the large number of factors associated with this type of disease, early detection is the best way to fight it. Mammography is the main imaging exam currently used for detection, since it is able to identify the presence of microcalcifications, which are a key indicator of the presence of cancer. As a complement exam, breast ultrasonography has also been widely used because of the large number of inconclusive mammograms and the difficulty of diagnosing younger women. However, the interpretation of ultrasound images is quite dependent on the experience of the doctor in charge of the diagnosis. To aid in the interpretation of these images, Computer-Aided Diagnosis (CAD) systems have appeared, and it seeks to provide a second opinion for medical specialists. In this work, the attribute selection and classification stages presented in these systems were developed. A wrapper approach with a search strategy based in genetic algorithms, and two filter approaches, the Welch's t test and the ReliefF algorithm was developed. To evaluate the subsets performance, a Multilayer Perceptron (MLP) neural network, with backpropagation learning algorithm was developed as a classifier. The metric used to evaluate the classification performance of each subset of attributes was the area of under the Receiver Operating Characteristic curve (Az).The used database has 541 images, with 314 benign lesions and 227 malignant lesions with a biopsyproven diagnosis. In addition, the database contains the manual segmentation of these images performed by a specialist physician and 22 morphological extracted attributes. The filter techniques results showed that some attributes alone are able to obtain good classification results, such as the depth/width ratio of the lesion, reaching 0.731 for Az. Besides that, the best results were found through the wrapper strategy, in which a value of 0.835 was obtained for Az using only eight of the 22 attributes, demonstrating the importance of these steps in this type of CAD system, increasing the final performance.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-09-04T12:02:58Z
dc.date.issued.fl_str_mv 2017-03-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv AlBONICO, Guilherme Antônio Mantovani. Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom. 2017. 77 p. Dissertação (Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, 2017.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br/handle/tede/2998
identifier_str_mv AlBONICO, Guilherme Antônio Mantovani. Seleção de atributos e classificação automática de lesões mamárias em imagens de ultrassom. 2017. 77 p. Dissertação (Mestrado em Engenharia Elétrica e Computação) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, 2017.
url http://tede.unioeste.br/handle/tede/2998
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -1040084669565072649
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -7734402124082146922
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Foz do Iguaçu
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica e Computação
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Engenharias e Ciências Exatas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Foz do Iguaçu
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/2998/6/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/2998/7/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/2998/8/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/2998/5/Guilherme_A_Mantovani_Albonico_2017.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/2998/1/license.txt
bitstream.checksum.fl_str_mv 4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
e0002a5923940dc5d0866cdf6f30a5ae
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723380949254144