Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | https://tede.unioeste.br/handle/tede/6848 |
Resumo: | Brazil is one of the world’s main agricultural producers, with an important contribution from the state of Paraná, particularly regarding soybean and maize crops. Maintaining this potential is crucial due to food demands, and one way to sustain and increase yield is through monitoring. The objective of this study is to evaluate the associations between productivity of first-harvest maize, second-harvest maize, and first-harvest soybean with meteorological variables such as rainfall, air temperature, dewpoint temperature, wind speed, and radiation. These variables are organized as accumulated or mean values per ten-day period for the historical series between 2010 and 2020 in municipalities located in several mesoregions of the state of Paraná. For spatial monitoring, the following methods can be used: Spatial Multivariate Analysis (MULTISPATI-PCA) to assess associations using cluster analysis; spatio-temporal geostatistical methods; and patterns and spatial correlations among areas. MULTISPATI-PCA reduces the dimensionality of the dataset into spatial principal components (SPC) composed of variables that show stronger associations with productivies. Furthermore, spatio-temporal geostatistics were used to fit models separable, sumMetric, metric, simpleSumMetric, and product-Sum for the three productivities in study, as well as the five meteorological variables, in order to determine the best model for the spatio-temporal representation of the variables. The best fitted model was based on the mean squared error (MSE). Additionally, to analyze the association between variables, the Global and Local Bivariate Moran's Index were used to indicate the degree of association among municipalities. Therefore, with the applied methods, it was possible to identify locations with associative clusters, as well as municipalities and variables with stronger associations with first-harvest maize, second-harvest maize, and firstharvest soybean. The best fits were obtained with the sumMetric and simpleSumMetric spatiotemporal models for the different variables in study. It can be concluded that the employed methods provided explanations regarding the degree of associations between the variables. |
id |
UNIOESTE-1_6596b1961d0b377f6256c5ed7abaad26 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/6848 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Dalposso, Gustavo Henriquehttp://lattes.cnpq.br/8040071176709565Cima, Elizabeth Gironhttp://lattes.cnpq.br/6425282643235095Oliveira, Márcio Paulo dehttp://lattes.cnpq.br/3019781365469075Guedes, Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864http://lattes.cnpq.br/4809653314738155Gamero, Paulo2023-10-23T14:13:59Z2023-07-28GAMERO, Paulo. Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná. 2023. 112 f. Tese (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.https://tede.unioeste.br/handle/tede/6848Brazil is one of the world’s main agricultural producers, with an important contribution from the state of Paraná, particularly regarding soybean and maize crops. Maintaining this potential is crucial due to food demands, and one way to sustain and increase yield is through monitoring. The objective of this study is to evaluate the associations between productivity of first-harvest maize, second-harvest maize, and first-harvest soybean with meteorological variables such as rainfall, air temperature, dewpoint temperature, wind speed, and radiation. These variables are organized as accumulated or mean values per ten-day period for the historical series between 2010 and 2020 in municipalities located in several mesoregions of the state of Paraná. For spatial monitoring, the following methods can be used: Spatial Multivariate Analysis (MULTISPATI-PCA) to assess associations using cluster analysis; spatio-temporal geostatistical methods; and patterns and spatial correlations among areas. MULTISPATI-PCA reduces the dimensionality of the dataset into spatial principal components (SPC) composed of variables that show stronger associations with productivies. Furthermore, spatio-temporal geostatistics were used to fit models separable, sumMetric, metric, simpleSumMetric, and product-Sum for the three productivities in study, as well as the five meteorological variables, in order to determine the best model for the spatio-temporal representation of the variables. The best fitted model was based on the mean squared error (MSE). Additionally, to analyze the association between variables, the Global and Local Bivariate Moran's Index were used to indicate the degree of association among municipalities. Therefore, with the applied methods, it was possible to identify locations with associative clusters, as well as municipalities and variables with stronger associations with first-harvest maize, second-harvest maize, and firstharvest soybean. The best fits were obtained with the sumMetric and simpleSumMetric spatiotemporal models for the different variables in study. It can be concluded that the employed methods provided explanations regarding the degree of associations between the variables.O Brasil é um dos principais produtores agrícolas do mundo, com principal participação do estado do Paraná, em especial nas culturas de soja e milho. Manter esse rendimento é fundamental devido às demandas alimentícias, e uma forma de manter e aumentar esses rendimentos é por meio de monitoramentos. O objetivo do estudo é avaliar as associações das produtividades do milho de primeira safra, milho de segunda safra e soja de primeira safra com as variáveis meteorológicas: precipitação, radiação (valores acumulados), temperatura do ar, temperatura do ponto de orvalho e velocidade do vento (valores médios), obtidas por decêndio para a série histórica entre os anos 2010 e 2020 para os municípios das mesorregiões: oeste, sudeste, noroeste, centro-sul, centro ocidental e norte central do estado do Paraná. Para um monitoramento espacial, pode-se usar: a Análise Multivariada Espacial (MULTISPATI-PCA); Análises de agrupamentos; métodos geoestatísticos espaço-temporais; e análise de padrões e correlações espaciais entre áreas. A MULTISPATI-PCA reduz a dimensão do conjunto de dados em componentes principais espaciais (CPE) compostas por variáveis que apresentem maiores associações com as produtividades. Além disso, com a geoestatística espaço-temporal ajustaram-se os modelos: separable, sumMetric, metric, simpleSumMetric e product-Sum para as três produtividades em estudo, bem como as cinco variáveis meteorológicas, a título de definir o melhor modelo para representação espaçotemporal das variáveis. A escolha do melhor modelo ajustado foi definida pela estatística de erro médio quadrático (MSE). Ainda visando analisar a associação entre as variáveis, utilizaram-se os Índices Global e Local Bivariados de Moran, informando o grau associativo entre os municípios. Assim, com os métodos aplicados, foi possível determinar locais com agrupamentos associativos, bem como municípios e variáveis com maiores associações com as produtividades da soja de primeira safra e milho de primeira e segunda safras. Os melhores ajustes foram dos modelos espaço-temporais sumMetric e simpleSumMetric para as diferentes variáveis em estudo. Pode-se afirmar que os métodos abordados trouxeram explicações sobre o grau de associações entre as variáveis.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2023-10-23T14:13:58Z No. of bitstreams: 1 Paulo_Gamero2023.pdf: 10790550 bytes, checksum: a5e928fa415ed9668ea365d6b389a946 (MD5)Made available in DSpace on 2023-10-23T14:13:59Z (GMT). No. of bitstreams: 1 Paulo_Gamero2023.pdf: 10790550 bytes, checksum: a5e928fa415ed9668ea365d6b389a946 (MD5) Previous issue date: 2023-07-28application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessClusterÍndice de MoranGeoestatísticaMULTISPATI-PCAClusterMoran's IndexGeostatisticsMULTISPATI-PCASistemas Biológicos e AgroindustriaisAnálise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do ParanáSpatio-Temporal analysis of meteorological variables associated with agricultural crops in mesoregions of the state of Paranáinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-53476924504160521296006002214374442868382015reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALPaulo_Gamero2023.pdfPaulo_Gamero2023.pdfapplication/pdf10790550http://tede.unioeste.br:8080/tede/bitstream/tede/6848/2/Paulo_Gamero2023.pdfa5e928fa415ed9668ea365d6b389a946MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6848/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/68482023-11-01 09:51:41.051oai:tede.unioeste.br:tede/6848Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2023-11-01T12:51:41Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná |
dc.title.alternative.eng.fl_str_mv |
Spatio-Temporal analysis of meteorological variables associated with agricultural crops in mesoregions of the state of Paraná |
title |
Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná |
spellingShingle |
Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná Gamero, Paulo Cluster Índice de Moran Geoestatística MULTISPATI-PCA Cluster Moran's Index Geostatistics MULTISPATI-PCA Sistemas Biológicos e Agroindustriais |
title_short |
Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná |
title_full |
Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná |
title_fullStr |
Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná |
title_full_unstemmed |
Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná |
title_sort |
Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná |
author |
Gamero, Paulo |
author_facet |
Gamero, Paulo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Opazo, Miguel Angel Uribe |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4179444121729414 |
dc.contributor.referee1.fl_str_mv |
Opazo, Miguel Angel Uribe |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/4179444121729414 |
dc.contributor.referee2.fl_str_mv |
Dalposso, Gustavo Henrique |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/8040071176709565 |
dc.contributor.referee3.fl_str_mv |
Cima, Elizabeth Giron |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/6425282643235095 |
dc.contributor.referee4.fl_str_mv |
Oliveira, Márcio Paulo de |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/3019781365469075 |
dc.contributor.referee5.fl_str_mv |
Guedes, Luciana Pagliosa Carvalho |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/3195220544719864 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4809653314738155 |
dc.contributor.author.fl_str_mv |
Gamero, Paulo |
contributor_str_mv |
Opazo, Miguel Angel Uribe Opazo, Miguel Angel Uribe Dalposso, Gustavo Henrique Cima, Elizabeth Giron Oliveira, Márcio Paulo de Guedes, Luciana Pagliosa Carvalho |
dc.subject.por.fl_str_mv |
Cluster Índice de Moran Geoestatística MULTISPATI-PCA |
topic |
Cluster Índice de Moran Geoestatística MULTISPATI-PCA Cluster Moran's Index Geostatistics MULTISPATI-PCA Sistemas Biológicos e Agroindustriais |
dc.subject.eng.fl_str_mv |
Cluster Moran's Index Geostatistics MULTISPATI-PCA |
dc.subject.cnpq.fl_str_mv |
Sistemas Biológicos e Agroindustriais |
description |
Brazil is one of the world’s main agricultural producers, with an important contribution from the state of Paraná, particularly regarding soybean and maize crops. Maintaining this potential is crucial due to food demands, and one way to sustain and increase yield is through monitoring. The objective of this study is to evaluate the associations between productivity of first-harvest maize, second-harvest maize, and first-harvest soybean with meteorological variables such as rainfall, air temperature, dewpoint temperature, wind speed, and radiation. These variables are organized as accumulated or mean values per ten-day period for the historical series between 2010 and 2020 in municipalities located in several mesoregions of the state of Paraná. For spatial monitoring, the following methods can be used: Spatial Multivariate Analysis (MULTISPATI-PCA) to assess associations using cluster analysis; spatio-temporal geostatistical methods; and patterns and spatial correlations among areas. MULTISPATI-PCA reduces the dimensionality of the dataset into spatial principal components (SPC) composed of variables that show stronger associations with productivies. Furthermore, spatio-temporal geostatistics were used to fit models separable, sumMetric, metric, simpleSumMetric, and product-Sum for the three productivities in study, as well as the five meteorological variables, in order to determine the best model for the spatio-temporal representation of the variables. The best fitted model was based on the mean squared error (MSE). Additionally, to analyze the association between variables, the Global and Local Bivariate Moran's Index were used to indicate the degree of association among municipalities. Therefore, with the applied methods, it was possible to identify locations with associative clusters, as well as municipalities and variables with stronger associations with first-harvest maize, second-harvest maize, and firstharvest soybean. The best fits were obtained with the sumMetric and simpleSumMetric spatiotemporal models for the different variables in study. It can be concluded that the employed methods provided explanations regarding the degree of associations between the variables. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-10-23T14:13:59Z |
dc.date.issued.fl_str_mv |
2023-07-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GAMERO, Paulo. Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná. 2023. 112 f. Tese (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
dc.identifier.uri.fl_str_mv |
https://tede.unioeste.br/handle/tede/6848 |
identifier_str_mv |
GAMERO, Paulo. Análise Espaço-Temporal das variáveis meteorológicas associadas a culturas agrícolas em mesorregiões do estado do Paraná. 2023. 112 f. Tese (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
url |
https://tede.unioeste.br/handle/tede/6848 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/6848/2/Paulo_Gamero2023.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/6848/1/license.txt |
bitstream.checksum.fl_str_mv |
a5e928fa415ed9668ea365d6b389a946 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723476626571264 |