Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br/handle/tede/3913 |
Resumo: | Trading competition has demanded to the Brazilian agribusiness greater production at lower costs. Thus, the Precision Agriculture (AP) comes to light as an alternative, which can identify the spatial variability of physical and chemical soil properties, in order to better know the agricultural area and, consequently, raise crop yield standard. Regardless of the PA’s use, knowing the spatial variability of a variable in the agricultural area requires adequate sampling planning that allows collecting as few sample points as possible, avoiding too many costs and maintaining quality in sampling. Regardless of the PA’s management, it is required to know the spatial variability of a variable in an agricultural area and this also asks for an adequate sample planning that makes possible the collection of the least number of sampling points, in order to avoid too much cost and to keep quality in sampling. So, this trial aimed at reducing the number of sample points collected by calculating the effective sample size (ESS). The univariate and multivariate ESS value was estimated for georeferenced variables with normal probability distribution using two methodologies: Griffith and Vallejos and Osorio. This study was carried out with simulated data, varying the values of the nugget effect as well as the range attributed to the variables, and with physical-chemical attributes of a soil. Therefore, variables do not always have normal probability distribution, mainly due to the presence of discrepant points. Thus, the value of univariate effective sample size for stationary and isotropic stochastic processes was estimated, considering that the covariance structure had a t-Student probability distribution. According to the multivariate results from variables with normal probability distribution, there was a decrease in the number of sample points from 48% to 93%. In both univariate and multivariate cases, the estimated ESS was lower by the Griffith method, indicating that this suggestion can make feasible a larger decrease in sample size. Univariate results derived from attributes with Student’s t-distribution showed a decrease from 40% to 95% in the number of sample points. Such variation in the sample size is justified by the different values of the spatial dependence parameters presented by the variables. It was also recorded that the radius of spatial dependence was the parameter with the greatest influence on the estimated value of uni and multivariate ESS, and the higher its value, because the smaller the effective sample size, the larger is the decrease in the sample size. |
id |
UNIOESTE-1_67089875cfa5137f3452d13d914eddd6 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/3913 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Guedes , Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864Assumpção, Rosangela Aparecida Botinhahttp://lattes.cnpq.br/5532192685456247Guedes, Luciana Pagliosa Carvalhohttp://lattes.cnpq.br/3195220544719864Rojas, Manuel Jesus Galeahttp://lattes.cnpq.br/8259390182729067Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414http://lattes.cnpq.br/1085422685501012Canton, Letícia Ellen Dal2018-09-06T14:42:33Z2018-02-06CANTON, Letícia Ellen Dal. Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student. 2018. 95 f. Dissertação (Mestrado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.http://tede.unioeste.br/handle/tede/3913Trading competition has demanded to the Brazilian agribusiness greater production at lower costs. Thus, the Precision Agriculture (AP) comes to light as an alternative, which can identify the spatial variability of physical and chemical soil properties, in order to better know the agricultural area and, consequently, raise crop yield standard. Regardless of the PA’s use, knowing the spatial variability of a variable in the agricultural area requires adequate sampling planning that allows collecting as few sample points as possible, avoiding too many costs and maintaining quality in sampling. Regardless of the PA’s management, it is required to know the spatial variability of a variable in an agricultural area and this also asks for an adequate sample planning that makes possible the collection of the least number of sampling points, in order to avoid too much cost and to keep quality in sampling. So, this trial aimed at reducing the number of sample points collected by calculating the effective sample size (ESS). The univariate and multivariate ESS value was estimated for georeferenced variables with normal probability distribution using two methodologies: Griffith and Vallejos and Osorio. This study was carried out with simulated data, varying the values of the nugget effect as well as the range attributed to the variables, and with physical-chemical attributes of a soil. Therefore, variables do not always have normal probability distribution, mainly due to the presence of discrepant points. Thus, the value of univariate effective sample size for stationary and isotropic stochastic processes was estimated, considering that the covariance structure had a t-Student probability distribution. According to the multivariate results from variables with normal probability distribution, there was a decrease in the number of sample points from 48% to 93%. In both univariate and multivariate cases, the estimated ESS was lower by the Griffith method, indicating that this suggestion can make feasible a larger decrease in sample size. Univariate results derived from attributes with Student’s t-distribution showed a decrease from 40% to 95% in the number of sample points. Such variation in the sample size is justified by the different values of the spatial dependence parameters presented by the variables. It was also recorded that the radius of spatial dependence was the parameter with the greatest influence on the estimated value of uni and multivariate ESS, and the higher its value, because the smaller the effective sample size, the larger is the decrease in the sample size.A concorrência de mercado impõe ao agronegócio brasileiro que se produza mais a custos cada vez menores. Para tal, uma das alternativas é a utilização da Agricultura de Precisão (AP), que possibilita identificar a variabilidade espacial das propriedades físico-químicas do solo, de modo a conhecer melhor a área agrícola e, consequentemente, elevar o nível de produtividade das culturas. Independente do emprego da AP, é necessário conhecer a variabilidade espacial de uma variável na área agrícola e tal demanda exige planejamento amostral adequado que viabilize coletar o mínimo possível de pontos amostrais para evitar custos demasiados e manter a qualidade na amostragem. Um dos objetivos desse trabalho é reduzir o número de pontos amostrais coletados a partir do cálculo do tamanho amostral efetivo (ESS). Foi estimado o valor do ESS univariado e multivariado para variáveis georreferenciadas com distribuição normal de probabilidade utilizando-se duas metodologias: a de Griffith e a de Vallejos e Osorio. O estudo foi realizado com dados simulados, variando os valores do efeito pepita e alcance atribuídos às variáveis, e com atributos físico-químicos do solo. Nem sempre as variáveis têm distribuição normal de probabilidade, devido principalmente à presença de pontos discrepantes. Desta forma, estimou-se o valor do tamanho amostral efetivo univariado para processos estocásticos estacionários e isotrópicos, considerando-se que a estrutura de covariância apresentava distribuição de probabilidade t-Student. Diante dos resultados multivariados provenientes de variáveis com distribuição de probabilidade normal, constatou-se uma redução no número de pontos amostrais que variou entre 48% e 93%. Tanto no caso uni quanto multivariado, o valor estimado do ESS foi menor pelo método de Griffith, indicando que essa proposta viabiliza maior redução no tamanho amostral. Os resultados univariados derivados dos atributos com distribuição t-Student mostraram redução entre 40% e 95% no número de pontos amostrais. Tal variação na redução do tamanho amostral é justificada pelos diferentes valores dos parâmetros de dependência espacial apresentados pelas variáveis. Verificou-se ainda que o raio de dependência espacial foi o parâmetro que exerceu maior influência no valor estimado do ESS uni e multivariado, sendo que quanto maior seu valor, menor o tamanho amostral efetivo e, consequentemente, maior a redução no tamanho amostral.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2018-09-06T14:42:33Z No. of bitstreams: 2 Leticia_Canton2018.pdf: 4218996 bytes, checksum: c5b6517613a487f781ed3cb408edc6ff (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-09-06T14:42:33Z (GMT). No. of bitstreams: 2 Leticia_Canton2018.pdf: 4218996 bytes, checksum: c5b6517613a487f781ed3cb408edc6ff (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-06Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAgricultura de precisãoAmostragem do soloDependência espacialGeoestatísticaRedimensionamento amostralPrecision agricultureSoil samplingSpatial dependenceGeostatisticsSample resizingCIENCIAS AGRARIAS::ENGENHARIA AGRICOLATamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-studentEffective sample size in space variability of georreferenced variables study using normal and t-student distributionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5347692450416052129600600600600221437444286838201591854457215887615552075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALLeticia_Canton2018.pdfLeticia_Canton2018.pdfapplication/pdf4218996http://tede.unioeste.br:8080/tede/bitstream/tede/3913/5/Leticia_Canton2018.pdfc5b6517613a487f781ed3cb408edc6ffMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/3913/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3913/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3913/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/3913/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/39132018-09-06 11:42:33.251oai:tede.unioeste.br:tede/3913Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2018-09-06T14:42:33Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student |
dc.title.alternative.eng.fl_str_mv |
Effective sample size in space variability of georreferenced variables study using normal and t-student distributions |
title |
Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student |
spellingShingle |
Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student Canton, Letícia Ellen Dal Agricultura de precisão Amostragem do solo Dependência espacial Geoestatística Redimensionamento amostral Precision agriculture Soil sampling Spatial dependence Geostatistics Sample resizing CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
title_short |
Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student |
title_full |
Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student |
title_fullStr |
Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student |
title_full_unstemmed |
Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student |
title_sort |
Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student |
author |
Canton, Letícia Ellen Dal |
author_facet |
Canton, Letícia Ellen Dal |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Guedes , Luciana Pagliosa Carvalho |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3195220544719864 |
dc.contributor.advisor-co1.fl_str_mv |
Assumpção, Rosangela Aparecida Botinha |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/5532192685456247 |
dc.contributor.referee1.fl_str_mv |
Guedes, Luciana Pagliosa Carvalho |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3195220544719864 |
dc.contributor.referee2.fl_str_mv |
Rojas, Manuel Jesus Galea |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/8259390182729067 |
dc.contributor.referee3.fl_str_mv |
Opazo, Miguel Angel Uribe |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4179444121729414 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1085422685501012 |
dc.contributor.author.fl_str_mv |
Canton, Letícia Ellen Dal |
contributor_str_mv |
Guedes , Luciana Pagliosa Carvalho Assumpção, Rosangela Aparecida Botinha Guedes, Luciana Pagliosa Carvalho Rojas, Manuel Jesus Galea Opazo, Miguel Angel Uribe |
dc.subject.por.fl_str_mv |
Agricultura de precisão Amostragem do solo Dependência espacial Geoestatística Redimensionamento amostral |
topic |
Agricultura de precisão Amostragem do solo Dependência espacial Geoestatística Redimensionamento amostral Precision agriculture Soil sampling Spatial dependence Geostatistics Sample resizing CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
dc.subject.eng.fl_str_mv |
Precision agriculture Soil sampling Spatial dependence Geostatistics Sample resizing |
dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
description |
Trading competition has demanded to the Brazilian agribusiness greater production at lower costs. Thus, the Precision Agriculture (AP) comes to light as an alternative, which can identify the spatial variability of physical and chemical soil properties, in order to better know the agricultural area and, consequently, raise crop yield standard. Regardless of the PA’s use, knowing the spatial variability of a variable in the agricultural area requires adequate sampling planning that allows collecting as few sample points as possible, avoiding too many costs and maintaining quality in sampling. Regardless of the PA’s management, it is required to know the spatial variability of a variable in an agricultural area and this also asks for an adequate sample planning that makes possible the collection of the least number of sampling points, in order to avoid too much cost and to keep quality in sampling. So, this trial aimed at reducing the number of sample points collected by calculating the effective sample size (ESS). The univariate and multivariate ESS value was estimated for georeferenced variables with normal probability distribution using two methodologies: Griffith and Vallejos and Osorio. This study was carried out with simulated data, varying the values of the nugget effect as well as the range attributed to the variables, and with physical-chemical attributes of a soil. Therefore, variables do not always have normal probability distribution, mainly due to the presence of discrepant points. Thus, the value of univariate effective sample size for stationary and isotropic stochastic processes was estimated, considering that the covariance structure had a t-Student probability distribution. According to the multivariate results from variables with normal probability distribution, there was a decrease in the number of sample points from 48% to 93%. In both univariate and multivariate cases, the estimated ESS was lower by the Griffith method, indicating that this suggestion can make feasible a larger decrease in sample size. Univariate results derived from attributes with Student’s t-distribution showed a decrease from 40% to 95% in the number of sample points. Such variation in the sample size is justified by the different values of the spatial dependence parameters presented by the variables. It was also recorded that the radius of spatial dependence was the parameter with the greatest influence on the estimated value of uni and multivariate ESS, and the higher its value, because the smaller the effective sample size, the larger is the decrease in the sample size. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-09-06T14:42:33Z |
dc.date.issued.fl_str_mv |
2018-02-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CANTON, Letícia Ellen Dal. Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student. 2018. 95 f. Dissertação (Mestrado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br/handle/tede/3913 |
identifier_str_mv |
CANTON, Letícia Ellen Dal. Tamanho amostral efetivo no estudo da variabilidade espacial de variáveis georreferenciadas usando as distribuições normal e t-student. 2018. 95 f. Dissertação (Mestrado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018. |
url |
http://tede.unioeste.br/handle/tede/3913 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.relation.cnpq.fl_str_mv |
9185445721588761555 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/3913/5/Leticia_Canton2018.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/3913/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/3913/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/3913/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/3913/1/license.txt |
bitstream.checksum.fl_str_mv |
c5b6517613a487f781ed3cb408edc6ff 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723403752636416 |