Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br/handle/tede/5629 |
Resumo: | The use of orbital remote sensing (RS) techniques has proven to be a valuable tool allowing agricultural monitoring on a regional scale with greater advance and accuracy and lower operating costs than traditional techniques. Given the country's geographical extent, the ability to identify and quantify agricultural areas and their production objectively and quickly, as well as the adequate regionalization of the Paraná crop and its agricultural statistics, are important aspects in the Brazilian agricultural context. The dissertation’s main objective was to map land use and land cover in a hydrographic basin, perform cluster analysis for regional restructuring and estimate soybean productivity in the state of Paraná. The three objectives and their corresponding scientific publications were grouped into three pieces for this objective. The first objective of this research was to develop a methodology for using Landsat-8 images on the Google Earth Engine platform to automatically classify land use and land cover in the São Francisco Verdadeiro hydrographic basin in the western region of Paraná (Paper 1). This approach compared commonly performed classifications with classification based on statistical attributes (median and standard deviation). The dataset of statistical attributes had an overall accuracy of 97.3% and Kappa of 0.9644, indicating that it was a reliable and representative method of mapping land use and land cover. The second objective of the dissertation was to develop a cluster analysis methodology for delimiting regions based on agroclimatic factors, considering the spatial proximity of data on soybean areas in Paraná (Paper 2). The current territorial divisions present many heterogeneities, due in part, to the form of delimitation of the regions and the different evolutions of the municipalities over the years. The findings in paper 2 demonstrated the efficacy of the agglomerative hierarchical grouping method for state regionalization of the investigated attributes. We indicate the state rearrangement under the soybean aspect in 9 groups, using the 'conventional' dataset and 17 groups using the 'soybean mapping' dataset. We highlight the usage of Geosilhouettes to better understand the local agro-geographic organization and find the appropriate distribution of groups with similar qualities and geographical regions. The third objective proposed here was to develop and evaluate the assimilation of RS data from satellite images in the WOFOST culture growth model, in a spatialized form (Paper 3). The premise of this study was that the orbital RS is a viable alternative to apply productivity models, as it provides the necessary spatialization to obtain localized and widely disseminated information. According to the yield maps, soybean yield varies more over time than it does spatially. This is primarily because agrometeorological data such as temperatures, precipitation, and solar radiation are spatially dependent. There is also a spatial dependence of phenological and biophysical data, as farmers follow a similar pattern in terms of sowing and harvest date with the climate determining agricultural activities. In comparison to the field yields, an R² of 0.51, MAE of 657.25 kg ha-1 and RMSE of 762.85 kg ha-1 were obtained. Overall, Google Earth Engine enabled the mapping to be completed quickly and easily. The interactivity and the speed of the platform’s processing were crucial during the learning and application stages. Python was equally essential throughout the dissertation, optimizing several tasks and enabling new approaches. The WOFOST model estimated productivity at the pixel level on a municipal scale, allowing for some reflection and knowledge. |
id |
UNIOESTE-1_a98bea281275f628801b1798b64ae2e6 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/5629 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Richetti, Jonathanhttp://lattes.cnpq.br/9862888690056331Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Rolim, Glauco de Souzahttp://lattes.cnpq.br/7838769590779294Esquerdo, Julio Cesar Dalla Morahttp://lattes.cnpq.br/3063767652927900http://lattes.cnpq.br/6173806880513817Becker, Willyan Ronaldo2021-11-04T19:07:01Z2021-08-13BECKER, Willyan Ronaldo. Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola. 2021. 168 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.http://tede.unioeste.br/handle/tede/5629The use of orbital remote sensing (RS) techniques has proven to be a valuable tool allowing agricultural monitoring on a regional scale with greater advance and accuracy and lower operating costs than traditional techniques. Given the country's geographical extent, the ability to identify and quantify agricultural areas and their production objectively and quickly, as well as the adequate regionalization of the Paraná crop and its agricultural statistics, are important aspects in the Brazilian agricultural context. The dissertation’s main objective was to map land use and land cover in a hydrographic basin, perform cluster analysis for regional restructuring and estimate soybean productivity in the state of Paraná. The three objectives and their corresponding scientific publications were grouped into three pieces for this objective. The first objective of this research was to develop a methodology for using Landsat-8 images on the Google Earth Engine platform to automatically classify land use and land cover in the São Francisco Verdadeiro hydrographic basin in the western region of Paraná (Paper 1). This approach compared commonly performed classifications with classification based on statistical attributes (median and standard deviation). The dataset of statistical attributes had an overall accuracy of 97.3% and Kappa of 0.9644, indicating that it was a reliable and representative method of mapping land use and land cover. The second objective of the dissertation was to develop a cluster analysis methodology for delimiting regions based on agroclimatic factors, considering the spatial proximity of data on soybean areas in Paraná (Paper 2). The current territorial divisions present many heterogeneities, due in part, to the form of delimitation of the regions and the different evolutions of the municipalities over the years. The findings in paper 2 demonstrated the efficacy of the agglomerative hierarchical grouping method for state regionalization of the investigated attributes. We indicate the state rearrangement under the soybean aspect in 9 groups, using the 'conventional' dataset and 17 groups using the 'soybean mapping' dataset. We highlight the usage of Geosilhouettes to better understand the local agro-geographic organization and find the appropriate distribution of groups with similar qualities and geographical regions. The third objective proposed here was to develop and evaluate the assimilation of RS data from satellite images in the WOFOST culture growth model, in a spatialized form (Paper 3). The premise of this study was that the orbital RS is a viable alternative to apply productivity models, as it provides the necessary spatialization to obtain localized and widely disseminated information. According to the yield maps, soybean yield varies more over time than it does spatially. This is primarily because agrometeorological data such as temperatures, precipitation, and solar radiation are spatially dependent. There is also a spatial dependence of phenological and biophysical data, as farmers follow a similar pattern in terms of sowing and harvest date with the climate determining agricultural activities. In comparison to the field yields, an R² of 0.51, MAE of 657.25 kg ha-1 and RMSE of 762.85 kg ha-1 were obtained. Overall, Google Earth Engine enabled the mapping to be completed quickly and easily. The interactivity and the speed of the platform’s processing were crucial during the learning and application stages. Python was equally essential throughout the dissertation, optimizing several tasks and enabling new approaches. The WOFOST model estimated productivity at the pixel level on a municipal scale, allowing for some reflection and knowledge.O uso de técnicas de sensoriamento remoto (SR) orbital tem se mostrado uma ferramenta valiosa, pois possibilita o monitoramento agrícola em escala regional, com maior antecedência e precisão, além de menor custo operacional em relação às técnicas tradicionais. A possibilidade de identificação e quantificação das áreas agrícolas e suas produções, de forma objetiva e rápida, além da adequada regionalização da safra paranaense e suas estatísticas agrícolas são aspectos relevantes no contexto agrícola brasileiro, considerada a extensão territorial do país. O objetivo geral da tese foi realizar o mapeamento de uso e cobertura da terra em uma bacia hidrográfica; realizar análise de agrupamento para reestruturação regional e estimar a produtividade da soja no estado do Paraná. Tal objetivo foi dividido em três partes, referentes aos três objetivos e seus respectivos artigos científicos. O primeiro objetivo desta pesquisa foi criar uma metodologia para aplicar uma classificação automática de uso e cobertura da terra, na bacia hidrográfica do rio São Francisco Verdadeiro, na região Oeste do Paraná, com imagens Landsat-8 na plataforma Google Earth Engine (Artigo 1). Essa abordagem comparou as classificações comumente realizadas com a classificação por atributos estatísticos (mediana e desvio padrão). Os resultados indicaram que o conjunto de dados de atributos estatísticos obteve exatidão global de 97,3% e Kappa de 0,9644, sendo uma forma confiável e representativa de mapeamento do uso e cobertura da terra. O segundo objetivo da tese visou desenvolver uma metodologia de análise de agrupamento para delimitação de regiões sob aspectos espectro-agroclimáticos, considerando a contiguidade espacial das informações de áreas paranaenses de soja (Artigo 2). A pesquisa amparou-se no fato de que as atuais divisões territoriais apresentam diversas heterogeneidades, devido, em parte, à forma de delimitação das regiões e às diferentes evoluções dos municípios ao longo dos anos. Os resultados obtidos, no artigo 2, indicaram eficácia do método de agrupamento hierárquico aglomerativo para a regionalização estadual dos atributos estudados. Indicamos o rearranjo estadual sob o aspecto sojícola em 9 grupos, pelo cenário ‘convencional’, e 17 grupos, pelo conjunto de dados ‘mapeamento sojícola’. Destacamos a utilização do Geosilhouettes para entender a estrutura agrogeográfica local e obter a melhor distribuição dos agrupamentos, cujos atributos e localizações geográficas são vinculados. O terceiro objetivo aqui proposto foi desenvolver e avaliar a assimilação de dados de SR derivado de imagens de satélite no modelo de crescimento de cultura WOFOST, de forma espacializada (Artigo 3). O pressuposto no estudo foi de que o SR orbital é uma alternativa viável para a aplicação de modelos de produtividade, pois apresentam a espacialização necessária para se ter uma informação localizada e amplamente difundida. Os mapas de produtividade mostram que a produtividade da soja muda mais ao longo dos anos do que espacialmente. Isso se deve, principalmente, à dependência espacial dos dados agrometeorológicos, como temperaturas, precipitação e radiação solar. Também, há a dependência espacial dos dados fenológicos e biofísicos, pois os agricultores seguem um padrão semelhante no que se refere às datas de semeadura e colheita, em que o clima é o fator determinante das atividades agrícolas. Em comparação com os rendimentos medidos em campo, foi obtido um R² de 0,51, MAE de 657,25 kg ha-1 e RMSE de 762,85 kg ha-1 . No geral, o Google Earth Engine possibilitou a execução do mapeamento de forma rápida e fácil. A interatividade da plataforma e o rápido processamento foram cruciais para as etapas de aprendizado e aplicação. A linguagem Python foi igualmente essencial no decorrer da tese, otimizando diversas tarefas e possibilitando novas abordagens. O modelo WOFOST proporcionou a estimativa da produtividade a nível de pixel, em escala municipal, viabilizando algumas reflexões e conhecimentos.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2021-11-04T19:07:01Z No. of bitstreams: 2 Willyan_Becker2021.pdf: 12604140 bytes, checksum: dc88856351c75e701f167cc0e5e5549e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2021-11-04T19:07:01Z (GMT). No. of bitstreams: 2 Willyan_Becker2021.pdf: 12604140 bytes, checksum: dc88856351c75e701f167cc0e5e5549e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2021-08-13Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAnálise de agrupamentoEstimativa de produtividade de sojaWOFOSTDados agrometeorológicos ERA5/Nasa PowerGoogle Earth EnginePythonCluster analysisSoybean yield estimationWOFOSTERA5/Nasa Power agrometeorological dataGoogle Earth EnginePythonSistemas Biológicos e AgroindustriaisSensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícolaRemote sensing associated with data mining techniques for agricultural production estimatesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-534769245041605212960060060022143744428683820152075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALWillyan_Becker2021.pdfWillyan_Becker2021.pdfapplication/pdf12604140http://tede.unioeste.br:8080/tede/bitstream/tede/5629/5/Willyan_Becker2021.pdfdc88856351c75e701f167cc0e5e5549eMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/5629/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5629/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5629/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/5629/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/56292021-11-04 16:07:01.973oai:tede.unioeste.br:tede/5629Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2021-11-04T19:07:01Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola |
dc.title.alternative.eng.fl_str_mv |
Remote sensing associated with data mining techniques for agricultural production estimates |
title |
Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola |
spellingShingle |
Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola Becker, Willyan Ronaldo Análise de agrupamento Estimativa de produtividade de soja WOFOST Dados agrometeorológicos ERA5/Nasa Power Google Earth Engine Python Cluster analysis Soybean yield estimation WOFOST ERA5/Nasa Power agrometeorological data Google Earth Engine Python Sistemas Biológicos e Agroindustriais |
title_short |
Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola |
title_full |
Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola |
title_fullStr |
Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola |
title_full_unstemmed |
Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola |
title_sort |
Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola |
author |
Becker, Willyan Ronaldo |
author_facet |
Becker, Willyan Ronaldo |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
dc.contributor.referee1.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
dc.contributor.referee2.fl_str_mv |
Richetti, Jonathan |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/9862888690056331 |
dc.contributor.referee3.fl_str_mv |
Opazo, Miguel Angel Uribe |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4179444121729414 |
dc.contributor.referee4.fl_str_mv |
Rolim, Glauco de Souza |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/7838769590779294 |
dc.contributor.referee5.fl_str_mv |
Esquerdo, Julio Cesar Dalla Mora |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/3063767652927900 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6173806880513817 |
dc.contributor.author.fl_str_mv |
Becker, Willyan Ronaldo |
contributor_str_mv |
Johann, Jerry Adriani Johann, Jerry Adriani Richetti, Jonathan Opazo, Miguel Angel Uribe Rolim, Glauco de Souza Esquerdo, Julio Cesar Dalla Mora |
dc.subject.por.fl_str_mv |
Análise de agrupamento Estimativa de produtividade de soja WOFOST Dados agrometeorológicos ERA5/Nasa Power Google Earth Engine Python |
topic |
Análise de agrupamento Estimativa de produtividade de soja WOFOST Dados agrometeorológicos ERA5/Nasa Power Google Earth Engine Python Cluster analysis Soybean yield estimation WOFOST ERA5/Nasa Power agrometeorological data Google Earth Engine Python Sistemas Biológicos e Agroindustriais |
dc.subject.eng.fl_str_mv |
Cluster analysis Soybean yield estimation WOFOST ERA5/Nasa Power agrometeorological data Google Earth Engine Python |
dc.subject.cnpq.fl_str_mv |
Sistemas Biológicos e Agroindustriais |
description |
The use of orbital remote sensing (RS) techniques has proven to be a valuable tool allowing agricultural monitoring on a regional scale with greater advance and accuracy and lower operating costs than traditional techniques. Given the country's geographical extent, the ability to identify and quantify agricultural areas and their production objectively and quickly, as well as the adequate regionalization of the Paraná crop and its agricultural statistics, are important aspects in the Brazilian agricultural context. The dissertation’s main objective was to map land use and land cover in a hydrographic basin, perform cluster analysis for regional restructuring and estimate soybean productivity in the state of Paraná. The three objectives and their corresponding scientific publications were grouped into three pieces for this objective. The first objective of this research was to develop a methodology for using Landsat-8 images on the Google Earth Engine platform to automatically classify land use and land cover in the São Francisco Verdadeiro hydrographic basin in the western region of Paraná (Paper 1). This approach compared commonly performed classifications with classification based on statistical attributes (median and standard deviation). The dataset of statistical attributes had an overall accuracy of 97.3% and Kappa of 0.9644, indicating that it was a reliable and representative method of mapping land use and land cover. The second objective of the dissertation was to develop a cluster analysis methodology for delimiting regions based on agroclimatic factors, considering the spatial proximity of data on soybean areas in Paraná (Paper 2). The current territorial divisions present many heterogeneities, due in part, to the form of delimitation of the regions and the different evolutions of the municipalities over the years. The findings in paper 2 demonstrated the efficacy of the agglomerative hierarchical grouping method for state regionalization of the investigated attributes. We indicate the state rearrangement under the soybean aspect in 9 groups, using the 'conventional' dataset and 17 groups using the 'soybean mapping' dataset. We highlight the usage of Geosilhouettes to better understand the local agro-geographic organization and find the appropriate distribution of groups with similar qualities and geographical regions. The third objective proposed here was to develop and evaluate the assimilation of RS data from satellite images in the WOFOST culture growth model, in a spatialized form (Paper 3). The premise of this study was that the orbital RS is a viable alternative to apply productivity models, as it provides the necessary spatialization to obtain localized and widely disseminated information. According to the yield maps, soybean yield varies more over time than it does spatially. This is primarily because agrometeorological data such as temperatures, precipitation, and solar radiation are spatially dependent. There is also a spatial dependence of phenological and biophysical data, as farmers follow a similar pattern in terms of sowing and harvest date with the climate determining agricultural activities. In comparison to the field yields, an R² of 0.51, MAE of 657.25 kg ha-1 and RMSE of 762.85 kg ha-1 were obtained. Overall, Google Earth Engine enabled the mapping to be completed quickly and easily. The interactivity and the speed of the platform’s processing were crucial during the learning and application stages. Python was equally essential throughout the dissertation, optimizing several tasks and enabling new approaches. The WOFOST model estimated productivity at the pixel level on a municipal scale, allowing for some reflection and knowledge. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-11-04T19:07:01Z |
dc.date.issued.fl_str_mv |
2021-08-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BECKER, Willyan Ronaldo. Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola. 2021. 168 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br/handle/tede/5629 |
identifier_str_mv |
BECKER, Willyan Ronaldo. Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola. 2021. 168 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
url |
http://tede.unioeste.br/handle/tede/5629 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/5629/5/Willyan_Becker2021.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/5629/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/5629/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/5629/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/5629/1/license.txt |
bitstream.checksum.fl_str_mv |
dc88856351c75e701f167cc0e5e5549e 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723448254201856 |