Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola

Detalhes bibliográficos
Autor(a) principal: Becker, Willyan Ronaldo
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br/handle/tede/5629
Resumo: The use of orbital remote sensing (RS) techniques has proven to be a valuable tool allowing agricultural monitoring on a regional scale with greater advance and accuracy and lower operating costs than traditional techniques. Given the country's geographical extent, the ability to identify and quantify agricultural areas and their production objectively and quickly, as well as the adequate regionalization of the Paraná crop and its agricultural statistics, are important aspects in the Brazilian agricultural context. The dissertation’s main objective was to map land use and land cover in a hydrographic basin, perform cluster analysis for regional restructuring and estimate soybean productivity in the state of Paraná. The three objectives and their corresponding scientific publications were grouped into three pieces for this objective. The first objective of this research was to develop a methodology for using Landsat-8 images on the Google Earth Engine platform to automatically classify land use and land cover in the São Francisco Verdadeiro hydrographic basin in the western region of Paraná (Paper 1). This approach compared commonly performed classifications with classification based on statistical attributes (median and standard deviation). The dataset of statistical attributes had an overall accuracy of 97.3% and Kappa of 0.9644, indicating that it was a reliable and representative method of mapping land use and land cover. The second objective of the dissertation was to develop a cluster analysis methodology for delimiting regions based on agroclimatic factors, considering the spatial proximity of data on soybean areas in Paraná (Paper 2). The current territorial divisions present many heterogeneities, due in part, to the form of delimitation of the regions and the different evolutions of the municipalities over the years. The findings in paper 2 demonstrated the efficacy of the agglomerative hierarchical grouping method for state regionalization of the investigated attributes. We indicate the state rearrangement under the soybean aspect in 9 groups, using the 'conventional' dataset and 17 groups using the 'soybean mapping' dataset. We highlight the usage of Geosilhouettes to better understand the local agro-geographic organization and find the appropriate distribution of groups with similar qualities and geographical regions. The third objective proposed here was to develop and evaluate the assimilation of RS data from satellite images in the WOFOST culture growth model, in a spatialized form (Paper 3). The premise of this study was that the orbital RS is a viable alternative to apply productivity models, as it provides the necessary spatialization to obtain localized and widely disseminated information. According to the yield maps, soybean yield varies more over time than it does spatially. This is primarily because agrometeorological data such as temperatures, precipitation, and solar radiation are spatially dependent. There is also a spatial dependence of phenological and biophysical data, as farmers follow a similar pattern in terms of sowing and harvest date with the climate determining agricultural activities. In comparison to the field yields, an R² of 0.51, MAE of 657.25 kg ha-1 and RMSE of 762.85 kg ha-1 were obtained. Overall, Google Earth Engine enabled the mapping to be completed quickly and easily. The interactivity and the speed of the platform’s processing were crucial during the learning and application stages. Python was equally essential throughout the dissertation, optimizing several tasks and enabling new approaches. The WOFOST model estimated productivity at the pixel level on a municipal scale, allowing for some reflection and knowledge.
id UNIOESTE-1_a98bea281275f628801b1798b64ae2e6
oai_identifier_str oai:tede.unioeste.br:tede/5629
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Richetti, Jonathanhttp://lattes.cnpq.br/9862888690056331Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Rolim, Glauco de Souzahttp://lattes.cnpq.br/7838769590779294Esquerdo, Julio Cesar Dalla Morahttp://lattes.cnpq.br/3063767652927900http://lattes.cnpq.br/6173806880513817Becker, Willyan Ronaldo2021-11-04T19:07:01Z2021-08-13BECKER, Willyan Ronaldo. Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola. 2021. 168 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.http://tede.unioeste.br/handle/tede/5629The use of orbital remote sensing (RS) techniques has proven to be a valuable tool allowing agricultural monitoring on a regional scale with greater advance and accuracy and lower operating costs than traditional techniques. Given the country's geographical extent, the ability to identify and quantify agricultural areas and their production objectively and quickly, as well as the adequate regionalization of the Paraná crop and its agricultural statistics, are important aspects in the Brazilian agricultural context. The dissertation’s main objective was to map land use and land cover in a hydrographic basin, perform cluster analysis for regional restructuring and estimate soybean productivity in the state of Paraná. The three objectives and their corresponding scientific publications were grouped into three pieces for this objective. The first objective of this research was to develop a methodology for using Landsat-8 images on the Google Earth Engine platform to automatically classify land use and land cover in the São Francisco Verdadeiro hydrographic basin in the western region of Paraná (Paper 1). This approach compared commonly performed classifications with classification based on statistical attributes (median and standard deviation). The dataset of statistical attributes had an overall accuracy of 97.3% and Kappa of 0.9644, indicating that it was a reliable and representative method of mapping land use and land cover. The second objective of the dissertation was to develop a cluster analysis methodology for delimiting regions based on agroclimatic factors, considering the spatial proximity of data on soybean areas in Paraná (Paper 2). The current territorial divisions present many heterogeneities, due in part, to the form of delimitation of the regions and the different evolutions of the municipalities over the years. The findings in paper 2 demonstrated the efficacy of the agglomerative hierarchical grouping method for state regionalization of the investigated attributes. We indicate the state rearrangement under the soybean aspect in 9 groups, using the 'conventional' dataset and 17 groups using the 'soybean mapping' dataset. We highlight the usage of Geosilhouettes to better understand the local agro-geographic organization and find the appropriate distribution of groups with similar qualities and geographical regions. The third objective proposed here was to develop and evaluate the assimilation of RS data from satellite images in the WOFOST culture growth model, in a spatialized form (Paper 3). The premise of this study was that the orbital RS is a viable alternative to apply productivity models, as it provides the necessary spatialization to obtain localized and widely disseminated information. According to the yield maps, soybean yield varies more over time than it does spatially. This is primarily because agrometeorological data such as temperatures, precipitation, and solar radiation are spatially dependent. There is also a spatial dependence of phenological and biophysical data, as farmers follow a similar pattern in terms of sowing and harvest date with the climate determining agricultural activities. In comparison to the field yields, an R² of 0.51, MAE of 657.25 kg ha-1 and RMSE of 762.85 kg ha-1 were obtained. Overall, Google Earth Engine enabled the mapping to be completed quickly and easily. The interactivity and the speed of the platform’s processing were crucial during the learning and application stages. Python was equally essential throughout the dissertation, optimizing several tasks and enabling new approaches. The WOFOST model estimated productivity at the pixel level on a municipal scale, allowing for some reflection and knowledge.O uso de técnicas de sensoriamento remoto (SR) orbital tem se mostrado uma ferramenta valiosa, pois possibilita o monitoramento agrícola em escala regional, com maior antecedência e precisão, além de menor custo operacional em relação às técnicas tradicionais. A possibilidade de identificação e quantificação das áreas agrícolas e suas produções, de forma objetiva e rápida, além da adequada regionalização da safra paranaense e suas estatísticas agrícolas são aspectos relevantes no contexto agrícola brasileiro, considerada a extensão territorial do país. O objetivo geral da tese foi realizar o mapeamento de uso e cobertura da terra em uma bacia hidrográfica; realizar análise de agrupamento para reestruturação regional e estimar a produtividade da soja no estado do Paraná. Tal objetivo foi dividido em três partes, referentes aos três objetivos e seus respectivos artigos científicos. O primeiro objetivo desta pesquisa foi criar uma metodologia para aplicar uma classificação automática de uso e cobertura da terra, na bacia hidrográfica do rio São Francisco Verdadeiro, na região Oeste do Paraná, com imagens Landsat-8 na plataforma Google Earth Engine (Artigo 1). Essa abordagem comparou as classificações comumente realizadas com a classificação por atributos estatísticos (mediana e desvio padrão). Os resultados indicaram que o conjunto de dados de atributos estatísticos obteve exatidão global de 97,3% e Kappa de 0,9644, sendo uma forma confiável e representativa de mapeamento do uso e cobertura da terra. O segundo objetivo da tese visou desenvolver uma metodologia de análise de agrupamento para delimitação de regiões sob aspectos espectro-agroclimáticos, considerando a contiguidade espacial das informações de áreas paranaenses de soja (Artigo 2). A pesquisa amparou-se no fato de que as atuais divisões territoriais apresentam diversas heterogeneidades, devido, em parte, à forma de delimitação das regiões e às diferentes evoluções dos municípios ao longo dos anos. Os resultados obtidos, no artigo 2, indicaram eficácia do método de agrupamento hierárquico aglomerativo para a regionalização estadual dos atributos estudados. Indicamos o rearranjo estadual sob o aspecto sojícola em 9 grupos, pelo cenário ‘convencional’, e 17 grupos, pelo conjunto de dados ‘mapeamento sojícola’. Destacamos a utilização do Geosilhouettes para entender a estrutura agrogeográfica local e obter a melhor distribuição dos agrupamentos, cujos atributos e localizações geográficas são vinculados. O terceiro objetivo aqui proposto foi desenvolver e avaliar a assimilação de dados de SR derivado de imagens de satélite no modelo de crescimento de cultura WOFOST, de forma espacializada (Artigo 3). O pressuposto no estudo foi de que o SR orbital é uma alternativa viável para a aplicação de modelos de produtividade, pois apresentam a espacialização necessária para se ter uma informação localizada e amplamente difundida. Os mapas de produtividade mostram que a produtividade da soja muda mais ao longo dos anos do que espacialmente. Isso se deve, principalmente, à dependência espacial dos dados agrometeorológicos, como temperaturas, precipitação e radiação solar. Também, há a dependência espacial dos dados fenológicos e biofísicos, pois os agricultores seguem um padrão semelhante no que se refere às datas de semeadura e colheita, em que o clima é o fator determinante das atividades agrícolas. Em comparação com os rendimentos medidos em campo, foi obtido um R² de 0,51, MAE de 657,25 kg ha-1 e RMSE de 762,85 kg ha-1 . No geral, o Google Earth Engine possibilitou a execução do mapeamento de forma rápida e fácil. A interatividade da plataforma e o rápido processamento foram cruciais para as etapas de aprendizado e aplicação. A linguagem Python foi igualmente essencial no decorrer da tese, otimizando diversas tarefas e possibilitando novas abordagens. O modelo WOFOST proporcionou a estimativa da produtividade a nível de pixel, em escala municipal, viabilizando algumas reflexões e conhecimentos.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2021-11-04T19:07:01Z No. of bitstreams: 2 Willyan_Becker2021.pdf: 12604140 bytes, checksum: dc88856351c75e701f167cc0e5e5549e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2021-11-04T19:07:01Z (GMT). No. of bitstreams: 2 Willyan_Becker2021.pdf: 12604140 bytes, checksum: dc88856351c75e701f167cc0e5e5549e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2021-08-13Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAnálise de agrupamentoEstimativa de produtividade de sojaWOFOSTDados agrometeorológicos ERA5/Nasa PowerGoogle Earth EnginePythonCluster analysisSoybean yield estimationWOFOSTERA5/Nasa Power agrometeorological dataGoogle Earth EnginePythonSistemas Biológicos e AgroindustriaisSensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícolaRemote sensing associated with data mining techniques for agricultural production estimatesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-534769245041605212960060060022143744428683820152075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALWillyan_Becker2021.pdfWillyan_Becker2021.pdfapplication/pdf12604140http://tede.unioeste.br:8080/tede/bitstream/tede/5629/5/Willyan_Becker2021.pdfdc88856351c75e701f167cc0e5e5549eMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/5629/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5629/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5629/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/5629/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/56292021-11-04 16:07:01.973oai:tede.unioeste.br:tede/5629Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2021-11-04T19:07:01Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola
dc.title.alternative.eng.fl_str_mv Remote sensing associated with data mining techniques for agricultural production estimates
title Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola
spellingShingle Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola
Becker, Willyan Ronaldo
Análise de agrupamento
Estimativa de produtividade de soja
WOFOST
Dados agrometeorológicos ERA5/Nasa Power
Google Earth Engine
Python
Cluster analysis
Soybean yield estimation
WOFOST
ERA5/Nasa Power agrometeorological data
Google Earth Engine
Python
Sistemas Biológicos e Agroindustriais
title_short Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola
title_full Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola
title_fullStr Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola
title_full_unstemmed Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola
title_sort Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola
author Becker, Willyan Ronaldo
author_facet Becker, Willyan Ronaldo
author_role author
dc.contributor.advisor1.fl_str_mv Johann, Jerry Adriani
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.referee1.fl_str_mv Johann, Jerry Adriani
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.referee2.fl_str_mv Richetti, Jonathan
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/9862888690056331
dc.contributor.referee3.fl_str_mv Opazo, Miguel Angel Uribe
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4179444121729414
dc.contributor.referee4.fl_str_mv Rolim, Glauco de Souza
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/7838769590779294
dc.contributor.referee5.fl_str_mv Esquerdo, Julio Cesar Dalla Mora
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/3063767652927900
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6173806880513817
dc.contributor.author.fl_str_mv Becker, Willyan Ronaldo
contributor_str_mv Johann, Jerry Adriani
Johann, Jerry Adriani
Richetti, Jonathan
Opazo, Miguel Angel Uribe
Rolim, Glauco de Souza
Esquerdo, Julio Cesar Dalla Mora
dc.subject.por.fl_str_mv Análise de agrupamento
Estimativa de produtividade de soja
WOFOST
Dados agrometeorológicos ERA5/Nasa Power
Google Earth Engine
Python
topic Análise de agrupamento
Estimativa de produtividade de soja
WOFOST
Dados agrometeorológicos ERA5/Nasa Power
Google Earth Engine
Python
Cluster analysis
Soybean yield estimation
WOFOST
ERA5/Nasa Power agrometeorological data
Google Earth Engine
Python
Sistemas Biológicos e Agroindustriais
dc.subject.eng.fl_str_mv Cluster analysis
Soybean yield estimation
WOFOST
ERA5/Nasa Power agrometeorological data
Google Earth Engine
Python
dc.subject.cnpq.fl_str_mv Sistemas Biológicos e Agroindustriais
description The use of orbital remote sensing (RS) techniques has proven to be a valuable tool allowing agricultural monitoring on a regional scale with greater advance and accuracy and lower operating costs than traditional techniques. Given the country's geographical extent, the ability to identify and quantify agricultural areas and their production objectively and quickly, as well as the adequate regionalization of the Paraná crop and its agricultural statistics, are important aspects in the Brazilian agricultural context. The dissertation’s main objective was to map land use and land cover in a hydrographic basin, perform cluster analysis for regional restructuring and estimate soybean productivity in the state of Paraná. The three objectives and their corresponding scientific publications were grouped into three pieces for this objective. The first objective of this research was to develop a methodology for using Landsat-8 images on the Google Earth Engine platform to automatically classify land use and land cover in the São Francisco Verdadeiro hydrographic basin in the western region of Paraná (Paper 1). This approach compared commonly performed classifications with classification based on statistical attributes (median and standard deviation). The dataset of statistical attributes had an overall accuracy of 97.3% and Kappa of 0.9644, indicating that it was a reliable and representative method of mapping land use and land cover. The second objective of the dissertation was to develop a cluster analysis methodology for delimiting regions based on agroclimatic factors, considering the spatial proximity of data on soybean areas in Paraná (Paper 2). The current territorial divisions present many heterogeneities, due in part, to the form of delimitation of the regions and the different evolutions of the municipalities over the years. The findings in paper 2 demonstrated the efficacy of the agglomerative hierarchical grouping method for state regionalization of the investigated attributes. We indicate the state rearrangement under the soybean aspect in 9 groups, using the 'conventional' dataset and 17 groups using the 'soybean mapping' dataset. We highlight the usage of Geosilhouettes to better understand the local agro-geographic organization and find the appropriate distribution of groups with similar qualities and geographical regions. The third objective proposed here was to develop and evaluate the assimilation of RS data from satellite images in the WOFOST culture growth model, in a spatialized form (Paper 3). The premise of this study was that the orbital RS is a viable alternative to apply productivity models, as it provides the necessary spatialization to obtain localized and widely disseminated information. According to the yield maps, soybean yield varies more over time than it does spatially. This is primarily because agrometeorological data such as temperatures, precipitation, and solar radiation are spatially dependent. There is also a spatial dependence of phenological and biophysical data, as farmers follow a similar pattern in terms of sowing and harvest date with the climate determining agricultural activities. In comparison to the field yields, an R² of 0.51, MAE of 657.25 kg ha-1 and RMSE of 762.85 kg ha-1 were obtained. Overall, Google Earth Engine enabled the mapping to be completed quickly and easily. The interactivity and the speed of the platform’s processing were crucial during the learning and application stages. Python was equally essential throughout the dissertation, optimizing several tasks and enabling new approaches. The WOFOST model estimated productivity at the pixel level on a municipal scale, allowing for some reflection and knowledge.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-11-04T19:07:01Z
dc.date.issued.fl_str_mv 2021-08-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BECKER, Willyan Ronaldo. Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola. 2021. 168 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br/handle/tede/5629
identifier_str_mv BECKER, Willyan Ronaldo. Sensoriamento remoto associado a técnicas de mineração de dados para estimativas de produção agrícola. 2021. 168 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.
url http://tede.unioeste.br/handle/tede/5629
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/5629/5/Willyan_Becker2021.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/5629/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/5629/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/5629/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/5629/1/license.txt
bitstream.checksum.fl_str_mv dc88856351c75e701f167cc0e5e5549e
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723448254201856