Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br/handle/tede/5150 |
Resumo: | Agricultural insurance is an important alternative to convert the agricultural sector into a financially stable model, even when faced with adverse events and natural disasters. Agricultural insurance is a financial instrument to reduce risk related to natural disasters by establishing a future contract in which one party is obligated to compensate the damage loss to the other party by paying a premium. Hence, for the producer, it works as a way to substitute an uncertain future financial loss by a reduced, predictable investment. Due to the higher transaction values involved, it is necessary to develop methods to inspect farms and verify the claimed losses. Remote sensing has the potential to support the insurance industry by providing an alternative to crop monitoring in large scales and at a low cost, facilitating the processes of fiscalization and decision making regarding agricultural insurance. Thus, this research aims to develop a methodology to confirm if a claimed loss occurred by applying seasonal trend analysis in Landsat-8/EVI time-series combined with weather. For this effect, information about both affected and non-affected areas are employed, using real inspected farmers (sown with maize, soybean, and wheat), in order to verify the existing pattern between these parameters, indicating their occurrence and distinguishing the natural disaster, by comparing the judicial investigation data provided by the insurance company helping this research. For the analyses, three classifiers were applied: Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM). RF classifier achieved 83, 96, and 81% for maize, soybean, and wheat, respectively, when determining whether a natural disaster did or did not occur. SVM classifier achieved 99 and 90% in maize and soybean, respectively, to detect the type of disaster, and RF achieved 86% for wheat at the same task. This methodology has proved to be efficient to confirm and detect a natural disaster, being a viable and important alternative solution for insurance companies to minimize their risks and increase their efficiency, helping in the process of insurance verification and fiscalization of actions related to such agricultural segments. |
id |
UNIOESTE-1_b68a62c48909acae8b6d082133ddb8de |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/5150 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Cima, Elizabeth Gironhttp://lattes.cnpq.br/6425282643235095Dalposso, Gustavo Henriquehttp://lattes.cnpq.br/8040071176709565Richart, Alfredohttp://lattes.cnpq.br/8308686269170774http://lattes.cnpq.br/9579344395890654Rambo, Eduardo Matias2020-12-08T18:10:55Z2020-08-20RAMBO, Eduardo Matias. Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina. 2020. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.http://tede.unioeste.br/handle/tede/5150Agricultural insurance is an important alternative to convert the agricultural sector into a financially stable model, even when faced with adverse events and natural disasters. Agricultural insurance is a financial instrument to reduce risk related to natural disasters by establishing a future contract in which one party is obligated to compensate the damage loss to the other party by paying a premium. Hence, for the producer, it works as a way to substitute an uncertain future financial loss by a reduced, predictable investment. Due to the higher transaction values involved, it is necessary to develop methods to inspect farms and verify the claimed losses. Remote sensing has the potential to support the insurance industry by providing an alternative to crop monitoring in large scales and at a low cost, facilitating the processes of fiscalization and decision making regarding agricultural insurance. Thus, this research aims to develop a methodology to confirm if a claimed loss occurred by applying seasonal trend analysis in Landsat-8/EVI time-series combined with weather. For this effect, information about both affected and non-affected areas are employed, using real inspected farmers (sown with maize, soybean, and wheat), in order to verify the existing pattern between these parameters, indicating their occurrence and distinguishing the natural disaster, by comparing the judicial investigation data provided by the insurance company helping this research. For the analyses, three classifiers were applied: Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM). RF classifier achieved 83, 96, and 81% for maize, soybean, and wheat, respectively, when determining whether a natural disaster did or did not occur. SVM classifier achieved 99 and 90% in maize and soybean, respectively, to detect the type of disaster, and RF achieved 86% for wheat at the same task. This methodology has proved to be efficient to confirm and detect a natural disaster, being a viable and important alternative solution for insurance companies to minimize their risks and increase their efficiency, helping in the process of insurance verification and fiscalization of actions related to such agricultural segments.O seguro rural é uma alternativa importante para tornar o setor agrícola financeiramente estável, mesmo com ocorrências de eventos naturais adversos. Trata-se de um contrato securitário no qual a parte contratada se obriga a indenizar a outra por um prejuízo eventual. Dessa forma, para o agricultor, é um mecanismo de transferência de uma despesa futura incerta e de valor elevado, por uma despesa antecipada de valor reduzido. Devido aos grandes valores envolvidos nessas transações, são necessários mecanismos para fiscalização da aplicação desses recursos. O sensoriamento remoto agrícola proporciona o acompanhamento amplo e sistemático das lavouras de forma contínua e com baixo custo, facilitando, assim, o processo de fiscalização e tomada de decisão sobre seguros rurais. Este trabalho se propõe a definir uma metodologia para a confirmação de sinistros agrícolas pela análise dos padrões sazonais de EVI/Landsat-8 e dados climáticos. Para isso, serão utilizadas informações de lavouras sinistradas (milho, soja e trigo) e lavouras sem a ocorrência de sinistro, com a finalidade de verificar o padrão existente entre esses parâmetros, indicando a ocorrência ou não de sinistros e qual é o tipo de sinistro incidente, comparando com os laudos de pericias reais cedidos por empresa parceira do estudo. Para as análises foram utilizados algoritmos de classificação supervisionada do Support vector machine (SVM), Random forest (RF) e Decision tree (DT). O classificador RF obteve melhor desempenho dentre os demais, pois classificou a ocorrência de sinistro com acurácias de 83, 96 e 81% para milho, soja e trigo, respectivamente. Para os tipos de sinistro nas culturas sinistradas, observou-se maiores acurácias para o SVM na cultura do milho (99%) e soja (90%). Para o trigo a maior acurácia ocorreu com o RF (86%). A metodologia apresentada se demonstrou eficaz no levantamento de informações confiáveis para a confirmação de ocorrências de sinistro no ramo de seguros rurais, sendo uma alternativa viável e de grande importância para a estabilidade das seguradoras, como auxiliar no procedimento de peritagem e fiscalização de ações relacionadas a esses segmentos agrícolas.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2020-12-08T18:10:55Z No. of bitstreams: 2 Eduardo_Rambo2020.pdf: 4484401 bytes, checksum: 5f03b96cbea7b2050aad316c0a129318 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2020-12-08T18:10:55Z (GMT). No. of bitstreams: 2 Eduardo_Rambo2020.pdf: 4484401 bytes, checksum: 5f03b96cbea7b2050aad316c0a129318 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2020-08-20Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSeguro ruralPerfil espectro-temporalEVITIMESATSupport vector machineRandom forestDecision treeEficiênciaAgricultural insuranceCrop insuranceTime-seriesEVITIMESATSupport vector machineRandom forestDecision treeEfficiencyCIENCIAS BIOLOGICAS::BIOLOGIA GERALAvaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquinaEvaluation of agricultural claims via orbital remote sensing and machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-53476924504160521296006006006002214374442868382015-16345593859312446972075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALEduardo_Rambo2020.pdfEduardo_Rambo2020.pdfapplication/pdf4484401http://tede.unioeste.br:8080/tede/bitstream/tede/5150/5/Eduardo_Rambo2020.pdf5f03b96cbea7b2050aad316c0a129318MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/5150/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5150/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5150/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/5150/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/51502020-12-08 15:10:55.889oai:tede.unioeste.br:tede/5150Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2020-12-08T18:10:55Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina |
dc.title.alternative.eng.fl_str_mv |
Evaluation of agricultural claims via orbital remote sensing and machine learning |
title |
Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina |
spellingShingle |
Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina Rambo, Eduardo Matias Seguro rural Perfil espectro-temporal EVI TIMESAT Support vector machine Random forest Decision tree Eficiência Agricultural insurance Crop insurance Time-series EVI TIMESAT Support vector machine Random forest Decision tree Efficiency CIENCIAS BIOLOGICAS::BIOLOGIA GERAL |
title_short |
Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina |
title_full |
Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina |
title_fullStr |
Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina |
title_full_unstemmed |
Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina |
title_sort |
Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina |
author |
Rambo, Eduardo Matias |
author_facet |
Rambo, Eduardo Matias |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Opazo, Miguel Angel Uribe |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4179444121729414 |
dc.contributor.advisor-co1.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
dc.contributor.referee1.fl_str_mv |
Opazo, Miguel Angel Uribe |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/4179444121729414 |
dc.contributor.referee2.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
dc.contributor.referee3.fl_str_mv |
Cima, Elizabeth Giron |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/6425282643235095 |
dc.contributor.referee4.fl_str_mv |
Dalposso, Gustavo Henrique |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/8040071176709565 |
dc.contributor.referee5.fl_str_mv |
Richart, Alfredo |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/8308686269170774 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9579344395890654 |
dc.contributor.author.fl_str_mv |
Rambo, Eduardo Matias |
contributor_str_mv |
Opazo, Miguel Angel Uribe Johann, Jerry Adriani Opazo, Miguel Angel Uribe Johann, Jerry Adriani Cima, Elizabeth Giron Dalposso, Gustavo Henrique Richart, Alfredo |
dc.subject.por.fl_str_mv |
Seguro rural Perfil espectro-temporal EVI TIMESAT Support vector machine Random forest Decision tree Eficiência |
topic |
Seguro rural Perfil espectro-temporal EVI TIMESAT Support vector machine Random forest Decision tree Eficiência Agricultural insurance Crop insurance Time-series EVI TIMESAT Support vector machine Random forest Decision tree Efficiency CIENCIAS BIOLOGICAS::BIOLOGIA GERAL |
dc.subject.eng.fl_str_mv |
Agricultural insurance Crop insurance Time-series EVI TIMESAT Support vector machine Random forest Decision tree Efficiency |
dc.subject.cnpq.fl_str_mv |
CIENCIAS BIOLOGICAS::BIOLOGIA GERAL |
description |
Agricultural insurance is an important alternative to convert the agricultural sector into a financially stable model, even when faced with adverse events and natural disasters. Agricultural insurance is a financial instrument to reduce risk related to natural disasters by establishing a future contract in which one party is obligated to compensate the damage loss to the other party by paying a premium. Hence, for the producer, it works as a way to substitute an uncertain future financial loss by a reduced, predictable investment. Due to the higher transaction values involved, it is necessary to develop methods to inspect farms and verify the claimed losses. Remote sensing has the potential to support the insurance industry by providing an alternative to crop monitoring in large scales and at a low cost, facilitating the processes of fiscalization and decision making regarding agricultural insurance. Thus, this research aims to develop a methodology to confirm if a claimed loss occurred by applying seasonal trend analysis in Landsat-8/EVI time-series combined with weather. For this effect, information about both affected and non-affected areas are employed, using real inspected farmers (sown with maize, soybean, and wheat), in order to verify the existing pattern between these parameters, indicating their occurrence and distinguishing the natural disaster, by comparing the judicial investigation data provided by the insurance company helping this research. For the analyses, three classifiers were applied: Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM). RF classifier achieved 83, 96, and 81% for maize, soybean, and wheat, respectively, when determining whether a natural disaster did or did not occur. SVM classifier achieved 99 and 90% in maize and soybean, respectively, to detect the type of disaster, and RF achieved 86% for wheat at the same task. This methodology has proved to be efficient to confirm and detect a natural disaster, being a viable and important alternative solution for insurance companies to minimize their risks and increase their efficiency, helping in the process of insurance verification and fiscalization of actions related to such agricultural segments. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-12-08T18:10:55Z |
dc.date.issued.fl_str_mv |
2020-08-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RAMBO, Eduardo Matias. Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina. 2020. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br/handle/tede/5150 |
identifier_str_mv |
RAMBO, Eduardo Matias. Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina. 2020. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR. |
url |
http://tede.unioeste.br/handle/tede/5150 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.relation.cnpq.fl_str_mv |
-1634559385931244697 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/5150/5/Eduardo_Rambo2020.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/5150/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/5150/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/5150/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/5150/1/license.txt |
bitstream.checksum.fl_str_mv |
5f03b96cbea7b2050aad316c0a129318 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723435364057088 |