Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina

Detalhes bibliográficos
Autor(a) principal: Rambo, Eduardo Matias
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br/handle/tede/5150
Resumo: Agricultural insurance is an important alternative to convert the agricultural sector into a financially stable model, even when faced with adverse events and natural disasters. Agricultural insurance is a financial instrument to reduce risk related to natural disasters by establishing a future contract in which one party is obligated to compensate the damage loss to the other party by paying a premium. Hence, for the producer, it works as a way to substitute an uncertain future financial loss by a reduced, predictable investment. Due to the higher transaction values involved, it is necessary to develop methods to inspect farms and verify the claimed losses. Remote sensing has the potential to support the insurance industry by providing an alternative to crop monitoring in large scales and at a low cost, facilitating the processes of fiscalization and decision making regarding agricultural insurance. Thus, this research aims to develop a methodology to confirm if a claimed loss occurred by applying seasonal trend analysis in Landsat-8/EVI time-series combined with weather. For this effect, information about both affected and non-affected areas are employed, using real inspected farmers (sown with maize, soybean, and wheat), in order to verify the existing pattern between these parameters, indicating their occurrence and distinguishing the natural disaster, by comparing the judicial investigation data provided by the insurance company helping this research. For the analyses, three classifiers were applied: Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM). RF classifier achieved 83, 96, and 81% for maize, soybean, and wheat, respectively, when determining whether a natural disaster did or did not occur. SVM classifier achieved 99 and 90% in maize and soybean, respectively, to detect the type of disaster, and RF achieved 86% for wheat at the same task. This methodology has proved to be efficient to confirm and detect a natural disaster, being a viable and important alternative solution for insurance companies to minimize their risks and increase their efficiency, helping in the process of insurance verification and fiscalization of actions related to such agricultural segments.
id UNIOESTE-1_b68a62c48909acae8b6d082133ddb8de
oai_identifier_str oai:tede.unioeste.br:tede/5150
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Opazo, Miguel Angel Uribehttp://lattes.cnpq.br/4179444121729414Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708Cima, Elizabeth Gironhttp://lattes.cnpq.br/6425282643235095Dalposso, Gustavo Henriquehttp://lattes.cnpq.br/8040071176709565Richart, Alfredohttp://lattes.cnpq.br/8308686269170774http://lattes.cnpq.br/9579344395890654Rambo, Eduardo Matias2020-12-08T18:10:55Z2020-08-20RAMBO, Eduardo Matias. Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina. 2020. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.http://tede.unioeste.br/handle/tede/5150Agricultural insurance is an important alternative to convert the agricultural sector into a financially stable model, even when faced with adverse events and natural disasters. Agricultural insurance is a financial instrument to reduce risk related to natural disasters by establishing a future contract in which one party is obligated to compensate the damage loss to the other party by paying a premium. Hence, for the producer, it works as a way to substitute an uncertain future financial loss by a reduced, predictable investment. Due to the higher transaction values involved, it is necessary to develop methods to inspect farms and verify the claimed losses. Remote sensing has the potential to support the insurance industry by providing an alternative to crop monitoring in large scales and at a low cost, facilitating the processes of fiscalization and decision making regarding agricultural insurance. Thus, this research aims to develop a methodology to confirm if a claimed loss occurred by applying seasonal trend analysis in Landsat-8/EVI time-series combined with weather. For this effect, information about both affected and non-affected areas are employed, using real inspected farmers (sown with maize, soybean, and wheat), in order to verify the existing pattern between these parameters, indicating their occurrence and distinguishing the natural disaster, by comparing the judicial investigation data provided by the insurance company helping this research. For the analyses, three classifiers were applied: Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM). RF classifier achieved 83, 96, and 81% for maize, soybean, and wheat, respectively, when determining whether a natural disaster did or did not occur. SVM classifier achieved 99 and 90% in maize and soybean, respectively, to detect the type of disaster, and RF achieved 86% for wheat at the same task. This methodology has proved to be efficient to confirm and detect a natural disaster, being a viable and important alternative solution for insurance companies to minimize their risks and increase their efficiency, helping in the process of insurance verification and fiscalization of actions related to such agricultural segments.O seguro rural é uma alternativa importante para tornar o setor agrícola financeiramente estável, mesmo com ocorrências de eventos naturais adversos. Trata-se de um contrato securitário no qual a parte contratada se obriga a indenizar a outra por um prejuízo eventual. Dessa forma, para o agricultor, é um mecanismo de transferência de uma despesa futura incerta e de valor elevado, por uma despesa antecipada de valor reduzido. Devido aos grandes valores envolvidos nessas transações, são necessários mecanismos para fiscalização da aplicação desses recursos. O sensoriamento remoto agrícola proporciona o acompanhamento amplo e sistemático das lavouras de forma contínua e com baixo custo, facilitando, assim, o processo de fiscalização e tomada de decisão sobre seguros rurais. Este trabalho se propõe a definir uma metodologia para a confirmação de sinistros agrícolas pela análise dos padrões sazonais de EVI/Landsat-8 e dados climáticos. Para isso, serão utilizadas informações de lavouras sinistradas (milho, soja e trigo) e lavouras sem a ocorrência de sinistro, com a finalidade de verificar o padrão existente entre esses parâmetros, indicando a ocorrência ou não de sinistros e qual é o tipo de sinistro incidente, comparando com os laudos de pericias reais cedidos por empresa parceira do estudo. Para as análises foram utilizados algoritmos de classificação supervisionada do Support vector machine (SVM), Random forest (RF) e Decision tree (DT). O classificador RF obteve melhor desempenho dentre os demais, pois classificou a ocorrência de sinistro com acurácias de 83, 96 e 81% para milho, soja e trigo, respectivamente. Para os tipos de sinistro nas culturas sinistradas, observou-se maiores acurácias para o SVM na cultura do milho (99%) e soja (90%). Para o trigo a maior acurácia ocorreu com o RF (86%). A metodologia apresentada se demonstrou eficaz no levantamento de informações confiáveis para a confirmação de ocorrências de sinistro no ramo de seguros rurais, sendo uma alternativa viável e de grande importância para a estabilidade das seguradoras, como auxiliar no procedimento de peritagem e fiscalização de ações relacionadas a esses segmentos agrícolas.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2020-12-08T18:10:55Z No. of bitstreams: 2 Eduardo_Rambo2020.pdf: 4484401 bytes, checksum: 5f03b96cbea7b2050aad316c0a129318 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2020-12-08T18:10:55Z (GMT). No. of bitstreams: 2 Eduardo_Rambo2020.pdf: 4484401 bytes, checksum: 5f03b96cbea7b2050aad316c0a129318 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2020-08-20Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSeguro ruralPerfil espectro-temporalEVITIMESATSupport vector machineRandom forestDecision treeEficiênciaAgricultural insuranceCrop insuranceTime-seriesEVITIMESATSupport vector machineRandom forestDecision treeEfficiencyCIENCIAS BIOLOGICAS::BIOLOGIA GERALAvaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquinaEvaluation of agricultural claims via orbital remote sensing and machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-53476924504160521296006006006002214374442868382015-16345593859312446972075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALEduardo_Rambo2020.pdfEduardo_Rambo2020.pdfapplication/pdf4484401http://tede.unioeste.br:8080/tede/bitstream/tede/5150/5/Eduardo_Rambo2020.pdf5f03b96cbea7b2050aad316c0a129318MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/5150/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5150/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/5150/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/5150/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/51502020-12-08 15:10:55.889oai:tede.unioeste.br:tede/5150Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2020-12-08T18:10:55Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina
dc.title.alternative.eng.fl_str_mv Evaluation of agricultural claims via orbital remote sensing and machine learning
title Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina
spellingShingle Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina
Rambo, Eduardo Matias
Seguro rural
Perfil espectro-temporal
EVI
TIMESAT
Support vector machine
Random forest
Decision tree
Eficiência
Agricultural insurance
Crop insurance
Time-series
EVI
TIMESAT
Support vector machine
Random forest
Decision tree
Efficiency
CIENCIAS BIOLOGICAS::BIOLOGIA GERAL
title_short Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina
title_full Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina
title_fullStr Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina
title_full_unstemmed Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina
title_sort Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina
author Rambo, Eduardo Matias
author_facet Rambo, Eduardo Matias
author_role author
dc.contributor.advisor1.fl_str_mv Opazo, Miguel Angel Uribe
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4179444121729414
dc.contributor.advisor-co1.fl_str_mv Johann, Jerry Adriani
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.referee1.fl_str_mv Opazo, Miguel Angel Uribe
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/4179444121729414
dc.contributor.referee2.fl_str_mv Johann, Jerry Adriani
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.referee3.fl_str_mv Cima, Elizabeth Giron
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/6425282643235095
dc.contributor.referee4.fl_str_mv Dalposso, Gustavo Henrique
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/8040071176709565
dc.contributor.referee5.fl_str_mv Richart, Alfredo
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/8308686269170774
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9579344395890654
dc.contributor.author.fl_str_mv Rambo, Eduardo Matias
contributor_str_mv Opazo, Miguel Angel Uribe
Johann, Jerry Adriani
Opazo, Miguel Angel Uribe
Johann, Jerry Adriani
Cima, Elizabeth Giron
Dalposso, Gustavo Henrique
Richart, Alfredo
dc.subject.por.fl_str_mv Seguro rural
Perfil espectro-temporal
EVI
TIMESAT
Support vector machine
Random forest
Decision tree
Eficiência
topic Seguro rural
Perfil espectro-temporal
EVI
TIMESAT
Support vector machine
Random forest
Decision tree
Eficiência
Agricultural insurance
Crop insurance
Time-series
EVI
TIMESAT
Support vector machine
Random forest
Decision tree
Efficiency
CIENCIAS BIOLOGICAS::BIOLOGIA GERAL
dc.subject.eng.fl_str_mv Agricultural insurance
Crop insurance
Time-series
EVI
TIMESAT
Support vector machine
Random forest
Decision tree
Efficiency
dc.subject.cnpq.fl_str_mv CIENCIAS BIOLOGICAS::BIOLOGIA GERAL
description Agricultural insurance is an important alternative to convert the agricultural sector into a financially stable model, even when faced with adverse events and natural disasters. Agricultural insurance is a financial instrument to reduce risk related to natural disasters by establishing a future contract in which one party is obligated to compensate the damage loss to the other party by paying a premium. Hence, for the producer, it works as a way to substitute an uncertain future financial loss by a reduced, predictable investment. Due to the higher transaction values involved, it is necessary to develop methods to inspect farms and verify the claimed losses. Remote sensing has the potential to support the insurance industry by providing an alternative to crop monitoring in large scales and at a low cost, facilitating the processes of fiscalization and decision making regarding agricultural insurance. Thus, this research aims to develop a methodology to confirm if a claimed loss occurred by applying seasonal trend analysis in Landsat-8/EVI time-series combined with weather. For this effect, information about both affected and non-affected areas are employed, using real inspected farmers (sown with maize, soybean, and wheat), in order to verify the existing pattern between these parameters, indicating their occurrence and distinguishing the natural disaster, by comparing the judicial investigation data provided by the insurance company helping this research. For the analyses, three classifiers were applied: Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM). RF classifier achieved 83, 96, and 81% for maize, soybean, and wheat, respectively, when determining whether a natural disaster did or did not occur. SVM classifier achieved 99 and 90% in maize and soybean, respectively, to detect the type of disaster, and RF achieved 86% for wheat at the same task. This methodology has proved to be efficient to confirm and detect a natural disaster, being a viable and important alternative solution for insurance companies to minimize their risks and increase their efficiency, helping in the process of insurance verification and fiscalization of actions related to such agricultural segments.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-12-08T18:10:55Z
dc.date.issued.fl_str_mv 2020-08-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RAMBO, Eduardo Matias. Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina. 2020. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br/handle/tede/5150
identifier_str_mv RAMBO, Eduardo Matias. Avaliação de sinistros agrícolas via sensoriamento remoto orbital e aprendizado de máquina. 2020. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel - PR.
url http://tede.unioeste.br/handle/tede/5150
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.cnpq.fl_str_mv -1634559385931244697
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/5150/5/Eduardo_Rambo2020.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/5150/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/5150/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/5150/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/5150/1/license.txt
bitstream.checksum.fl_str_mv 5f03b96cbea7b2050aad316c0a129318
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723435364057088