Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná

Detalhes bibliográficos
Autor(a) principal: Postal, Adriana
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: https://tede.unioeste.br/handle/tede/7240
Resumo: This thesis addressed the estimation of reference evapotranspiration (ETo) in the agricultural context, focusing on efficient irrigation management. The main objective was to develop and validate models based on Multilayer Perceptron Artificial Neural Networks (MLP ANNs) for ETo prediction in the state of Paraná, using data from the National Institute of Meteorology (INMET) and a producer in the western region. The research began with a review of irrigation management and the Penman-Monteith method for ETo estimation, as well as the use of ANNs, highlighting challenges and relevant approaches. The methodology involved the collection and organization of meteorological data from INMET, essential for model training, and the development and training of ANNs using two optimizers (SGD and Adam), exploring meteorological variables as input to predict ETo, along with model validation using producer data. The analysis considered statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R2). The results revealed that the configurations RNA9 (with 8 input variables) and RNA10 (with 4 input variables) showed promising performance in ETo estimation. Validation with producer data highlighted the practical relevance of the models. The MAE, MSE, RMSE, and R2 metrics indicated efficacy, while the Kolmogorov-Smirnov test contributed to evaluating the predictions’ adherence to the statistical behavior of real data. The metric results showed that the best configuration was RNA9, with a mean absolute error of only 0.01 mm/day with both optimizers, and the configuration with fewer variables was RNA10, with a mean absolute error of only 0.03 mm/day, also with both optimizers. With R2 ranging between 0.99 and 1, it is possible to affirm that the models suited the data from the state of Paraná, even when confronted with producer data not used in training. Suggestions for future research include developing an integrated system for automated collection of meteorological data from INMET and implementing an irrigation management application based on the most efficient models. At the end of this work, it was possible to develop and validate ANN models for simplified and accurate ETo prediction in agriculture, promoting an accessible approach to optimize irrigation management in the state of Paraná.
id UNIOESTE-1_be15c87751d1323d066a5506ae5d55c1
oai_identifier_str oai:tede.unioeste.br:tede/7240
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Sampaio, Silvio CésarBoas, Marcio Antonio VillasPaetzold, Gustavo HenriqueRizzi, Claudia BrandeleroOlguin, Carlos José MariaReis, Ralpho Rinaldo doshttp://lattes.cnpq.br/7323720653064187Postal, Adriana2024-06-06T12:52:08Z2024-03-06Postal, Adriana. Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná. 2024. 100 f. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.https://tede.unioeste.br/handle/tede/7240This thesis addressed the estimation of reference evapotranspiration (ETo) in the agricultural context, focusing on efficient irrigation management. The main objective was to develop and validate models based on Multilayer Perceptron Artificial Neural Networks (MLP ANNs) for ETo prediction in the state of Paraná, using data from the National Institute of Meteorology (INMET) and a producer in the western region. The research began with a review of irrigation management and the Penman-Monteith method for ETo estimation, as well as the use of ANNs, highlighting challenges and relevant approaches. The methodology involved the collection and organization of meteorological data from INMET, essential for model training, and the development and training of ANNs using two optimizers (SGD and Adam), exploring meteorological variables as input to predict ETo, along with model validation using producer data. The analysis considered statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R2). The results revealed that the configurations RNA9 (with 8 input variables) and RNA10 (with 4 input variables) showed promising performance in ETo estimation. Validation with producer data highlighted the practical relevance of the models. The MAE, MSE, RMSE, and R2 metrics indicated efficacy, while the Kolmogorov-Smirnov test contributed to evaluating the predictions’ adherence to the statistical behavior of real data. The metric results showed that the best configuration was RNA9, with a mean absolute error of only 0.01 mm/day with both optimizers, and the configuration with fewer variables was RNA10, with a mean absolute error of only 0.03 mm/day, also with both optimizers. With R2 ranging between 0.99 and 1, it is possible to affirm that the models suited the data from the state of Paraná, even when confronted with producer data not used in training. Suggestions for future research include developing an integrated system for automated collection of meteorological data from INMET and implementing an irrigation management application based on the most efficient models. At the end of this work, it was possible to develop and validate ANN models for simplified and accurate ETo prediction in agriculture, promoting an accessible approach to optimize irrigation management in the state of Paraná.Esta tese abordou a estimativa da evapotranspiração de referência (ETo) no contexto agrícola, com foco no manejo eficiente da irrigação. O objetivo central foi desenvolver e validar modelos baseados em Redes Neurais Artificiais (RNAs) do tipo MLP (Multilayer Perceptron), para a previsão da ETo no estado do Paraná, utilizando dados do Instituto Nacional de Meteorologia (INMET) e de um produtor na região oeste. A pesquisa iniciou-se com uma revisão sobre o manejo e o método de Penman-Monteith para estimativa de ETo e o uso de RNAs, destacando desafios e abordagens relevantes. A metodologia envolveu a coleta e organização de dados meteorológicos do INMET, fundamentais para o treinamento dos modelos, o desenvolvimento e treinamento de RNAs, utilizando dois otimizadores (SGD e Adam), explorando variáveis meteorológicas como entrada para prever a ETo, além da validação dos modelos via dados do produtor. A análise considerou métricas estatísticas, incluindo Erro Médio Absoluto (MAE), Erro Quadrático Médio (MSE), Raiz do Erro Quadrático Médio (RMSE) e Coeficiente de Determinação (R2). Os resultados revelaram que as configurações RNA9 (com 8 variáveis de entrada) e RNA10 (com 4 variáveis de entrada) apresentaram desempenho promissor na estimativa da ETo. A validação com dados de um produtor destacou a relevância prática dos modelos. As métricas MAE, MSE, RMSE e R2 indicaram eficácia, enquanto o Teste de Kolmogorov-Smirnov contribuiu para avaliar a aderência das previsões ao comportamento estatístico dos dados reais. Os resultados das métricas mostraram que a melhor configuração foi a RNA9, com um erro médio absoluto de apenas 0,01 mm/dia com os dois otimizadores e a configuração com menos variáveis foi a RNA10, com um erro médio absoluto de apenas 0,03 mm/dia, também com os dois otimizadores. Com R2 variando entre 0,99 e 1, é possível afirmar que os modelos se adequaram aos dados do estado do Paraná, mesmo quando confrontados com os dados do produtor, que não foram utilizados no treinamento. Sugestões para pesquisas futuras incluem o desenvolvimento de um sistema integrado de coleta automatizada de dados meteorológicos do INMET e a implementação de um aplicativo para manejo da irrigação baseado nos modelos mais eficientes. Ao fim deste trabalho, foi possível desenvolver e validar os modelos de RNAs para previsão simplificada e precisa da ETo na agricultura, promovendo uma abordagem acessível para otimizar a gestão da irrigação no estado do Paraná.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2024-06-06T12:52:08Z No. of bitstreams: 1 Adriana Postal.pdf: 3086450 bytes, checksum: 3900dee0e8d251b793fff4dfa3cdf81c (MD5)Made available in DSpace on 2024-06-06T12:52:08Z (GMT). No. of bitstreams: 1 Adriana Postal.pdf: 3086450 bytes, checksum: 3900dee0e8d251b793fff4dfa3cdf81c (MD5) Previous issue date: 2024-03-06application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRedes neurais na agriculturaManejo da irrigaçãoDados meteorológicosNeural networks in agricultureIrrigation managementMeteorological dataRECURSOS HIDRICOS E SANEAMENTO AMBIENTALDesenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no ParanáDevelopment and validation of neural network models for the estimation of reference evapotranspiration in Paraná.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-53476924504160521296006002214374442868382015reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALAdriana Postal.pdfAdriana Postal.pdfapplication/pdf3086450http://tede.unioeste.br:8080/tede/bitstream/tede/7240/2/Adriana+Postal.pdf3900dee0e8d251b793fff4dfa3cdf81cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/7240/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/72402024-06-06 09:52:08.102oai:tede.unioeste.br:tede/7240Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2024-06-06T12:52:08Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná
dc.title.alternative.eng.fl_str_mv Development and validation of neural network models for the estimation of reference evapotranspiration in Paraná.
title Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná
spellingShingle Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná
Postal, Adriana
Redes neurais na agricultura
Manejo da irrigação
Dados meteorológicos
Neural networks in agriculture
Irrigation management
Meteorological data
RECURSOS HIDRICOS E SANEAMENTO AMBIENTAL
title_short Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná
title_full Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná
title_fullStr Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná
title_full_unstemmed Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná
title_sort Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná
author Postal, Adriana
author_facet Postal, Adriana
author_role author
dc.contributor.advisor1.fl_str_mv Sampaio, Silvio César
dc.contributor.advisor-co1.fl_str_mv Boas, Marcio Antonio Villas
dc.contributor.referee1.fl_str_mv Paetzold, Gustavo Henrique
dc.contributor.referee2.fl_str_mv Rizzi, Claudia Brandelero
dc.contributor.referee3.fl_str_mv Olguin, Carlos José Maria
dc.contributor.referee4.fl_str_mv Reis, Ralpho Rinaldo dos
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7323720653064187
dc.contributor.author.fl_str_mv Postal, Adriana
contributor_str_mv Sampaio, Silvio César
Boas, Marcio Antonio Villas
Paetzold, Gustavo Henrique
Rizzi, Claudia Brandelero
Olguin, Carlos José Maria
Reis, Ralpho Rinaldo dos
dc.subject.por.fl_str_mv Redes neurais na agricultura
Manejo da irrigação
Dados meteorológicos
topic Redes neurais na agricultura
Manejo da irrigação
Dados meteorológicos
Neural networks in agriculture
Irrigation management
Meteorological data
RECURSOS HIDRICOS E SANEAMENTO AMBIENTAL
dc.subject.eng.fl_str_mv Neural networks in agriculture
Irrigation management
Meteorological data
dc.subject.cnpq.fl_str_mv RECURSOS HIDRICOS E SANEAMENTO AMBIENTAL
description This thesis addressed the estimation of reference evapotranspiration (ETo) in the agricultural context, focusing on efficient irrigation management. The main objective was to develop and validate models based on Multilayer Perceptron Artificial Neural Networks (MLP ANNs) for ETo prediction in the state of Paraná, using data from the National Institute of Meteorology (INMET) and a producer in the western region. The research began with a review of irrigation management and the Penman-Monteith method for ETo estimation, as well as the use of ANNs, highlighting challenges and relevant approaches. The methodology involved the collection and organization of meteorological data from INMET, essential for model training, and the development and training of ANNs using two optimizers (SGD and Adam), exploring meteorological variables as input to predict ETo, along with model validation using producer data. The analysis considered statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R2). The results revealed that the configurations RNA9 (with 8 input variables) and RNA10 (with 4 input variables) showed promising performance in ETo estimation. Validation with producer data highlighted the practical relevance of the models. The MAE, MSE, RMSE, and R2 metrics indicated efficacy, while the Kolmogorov-Smirnov test contributed to evaluating the predictions’ adherence to the statistical behavior of real data. The metric results showed that the best configuration was RNA9, with a mean absolute error of only 0.01 mm/day with both optimizers, and the configuration with fewer variables was RNA10, with a mean absolute error of only 0.03 mm/day, also with both optimizers. With R2 ranging between 0.99 and 1, it is possible to affirm that the models suited the data from the state of Paraná, even when confronted with producer data not used in training. Suggestions for future research include developing an integrated system for automated collection of meteorological data from INMET and implementing an irrigation management application based on the most efficient models. At the end of this work, it was possible to develop and validate ANN models for simplified and accurate ETo prediction in agriculture, promoting an accessible approach to optimize irrigation management in the state of Paraná.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-06-06T12:52:08Z
dc.date.issued.fl_str_mv 2024-03-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Postal, Adriana. Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná. 2024. 100 f. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/7240
identifier_str_mv Postal, Adriana. Desenvolvimento e validação de modelos de redes neurais para estimativa de evapotranspiração de referência no Paraná. 2024. 100 f. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.
url https://tede.unioeste.br/handle/tede/7240
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/7240/2/Adriana+Postal.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/7240/1/license.txt
bitstream.checksum.fl_str_mv 3900dee0e8d251b793fff4dfa3cdf81c
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723323619409920