Modelo espacial birnbaum-saunders aplicado a dados agrícolas

Detalhes bibliográficos
Autor(a) principal: Papani, Fabiana Magda Garcia
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br:8080/tede/handle/tede/2703
Resumo: Understanding the spatial distribution knowledge regarding georeferenced data has been essencial to various areas including agriculture. Thus, several trials have been carried out. However, most of these studies assume that the underlying stochastic process is Gaussian. When the data associated with this process do not present normality, data transformations are applied. And though the use of these transformations has presented satisfactory results, it is important to consider models which take into account the characteristics of such phenomenon. It may be more appropriate than using a normal model. So, this trial aimed at proposing a spatial model based on the Birnbaum-Saunders distribution (BS). This distribution has been shown effective to model data that take positive values and whose behavior presents positive asymmetry and unimodality. Thefore, this trial has proposed a methodology that includes the formulation of the spatial Birnbaum-Saunders model , estimation of its parameters using maximum likelihood (ML), and application of diagnostic techniques which can detect the sensitivity of the model to atypical data and evaluate the proposed model through a simulation study and studies using real data sets of agricultural engineering. These data were obtadined in a 167.35-ha commercial area for grain production, in Cascavel city, to validate the studied model. In the study with simulated data and large samples, estimation parameters and diagnostic analysis showed a good performance. According to the study with real data, calculations of AIC (Akaike s information criterion) and BIC (Bayesian information criterion) indexes, Bayes factor as well as Q-Q plots constrution have shown that the proposed model is appropriate to fit the obtained data. Influential cases were detected, and their removal from data set caused a considerable change in contour maps. It is therefore concluided that Birnbaum-Saunders spatial model is adequate to carry out studies with spatially correlated data. Is is also an alternative model to the normal model when the data set present positive asymmetrical distribution
id UNIOESTE-1_c495638ed5a0845b98d90e0f1136b9ff
oai_identifier_str oai:tede.unioeste.br:tede/2703
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Guedes, Luciana Pagliosa CarvalhoCPF:00530938952http://lattes.cnpq.br/3195220544719864Lobos, Cristian Marcelo VillegasCPF:23184049841http://lattes.cnpq.br/7868115035277497Borssoi, Joelmir AndréCPF:03829082959http://lattes.cnpq.br/6054221596474652Assumpção, Rosangela Aparecida BotinhaCPF:90336321600http://lattes.cnpq.br/5532192685456247Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708CPF:18141875884http://lattes.cnpq.br/5105432174707505Papani, Fabiana Magda Garcia2017-07-10T19:24:09Z2016-07-052016-02-02PAPANI, Fabiana Magda Garcia. Birnbaum-saunders spatial model applied for agricultural data. 2016. 151 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.http://tede.unioeste.br:8080/tede/handle/tede/2703Understanding the spatial distribution knowledge regarding georeferenced data has been essencial to various areas including agriculture. Thus, several trials have been carried out. However, most of these studies assume that the underlying stochastic process is Gaussian. When the data associated with this process do not present normality, data transformations are applied. And though the use of these transformations has presented satisfactory results, it is important to consider models which take into account the characteristics of such phenomenon. It may be more appropriate than using a normal model. So, this trial aimed at proposing a spatial model based on the Birnbaum-Saunders distribution (BS). This distribution has been shown effective to model data that take positive values and whose behavior presents positive asymmetry and unimodality. Thefore, this trial has proposed a methodology that includes the formulation of the spatial Birnbaum-Saunders model , estimation of its parameters using maximum likelihood (ML), and application of diagnostic techniques which can detect the sensitivity of the model to atypical data and evaluate the proposed model through a simulation study and studies using real data sets of agricultural engineering. These data were obtadined in a 167.35-ha commercial area for grain production, in Cascavel city, to validate the studied model. In the study with simulated data and large samples, estimation parameters and diagnostic analysis showed a good performance. According to the study with real data, calculations of AIC (Akaike s information criterion) and BIC (Bayesian information criterion) indexes, Bayes factor as well as Q-Q plots constrution have shown that the proposed model is appropriate to fit the obtained data. Influential cases were detected, and their removal from data set caused a considerable change in contour maps. It is therefore concluided that Birnbaum-Saunders spatial model is adequate to carry out studies with spatially correlated data. Is is also an alternative model to the normal model when the data set present positive asymmetrical distributionO conhecimento da distribuição espacial de dados georrefenciados é de interesse de diversas áreas do conhecimento, incluindo a área agrícola. Neste sentido, diversos trabalhos já foram realizados; no entanto, a maioria destes trabalhos assumem que o processo estocástico subjacente é gaussiano. Quando os dados associados com este processo não apresentam normalidade, transformações de dados são usadas. E ainda que o uso dessas transformações tenha apresentado resultados satisfatórios, considerar modelos que levem em conta as características do fenômeno pode ser mais adequado do que a utilização do modelo normal. O objetivo deste trabalho é propor um modelo espacial baseado na distribuição Birnbaum-Saunders (BS). Esta distribuição tem se mostrado eficiente para modelar conjuntos de dados formados por valores estritamente positivos e cujo comportamento apresenta assimetria positiva e unimodalidade. A metodologia proposta neste trabalho inclui a formulação do modelo espacial Birnbaum-Saunders, a estimação de seus parâmetros utilizando o método de máxima verossimilhança (ML), a aplicação de técnicas de diagnóstico que permitem detectar a sensibilidade do modelo a dados atípicos, a avaliação do modelo proposto por um estudo de simulação e aplicação da metodologia desenvolvida em análise de dados reais da área agrícola. Os dados utilizados para validação do modelo estudado foram obtidos em uma área comercial de produção de grãos de 167,35 ha de Cascavel. No estudo com dados simulados, para amostras grandes, a estimação dos parâmetros e a análise de diagnóstico apresentaram boa performance. No estudo com dados reais, os cálculos dos índices AIC, BIC e fator Bayes bem como a construção de Q-Q plots mostraram que o modelo proposto é adequado para ajustar os dados. Casos influentes foram detectados e suas retiradas do conjunto de dados causaram uma mudança considerável nos mapas de contorno. Conclui-se portanto, que o modelo espacial Birnbaum-Saunders é adequado para realização de estudos com dados espacialmente correlacionados, e é um modelo alternativo ao modelo normal quando o conjunto de dados apresenta distribuição assimétrica positivaMade available in DSpace on 2017-07-10T19:24:09Z (GMT). No. of bitstreams: 1 tese__fabiana.pdf: 3413093 bytes, checksum: 69eef866f8ca47e7714ae83768804879 (MD5) Previous issue date: 2016-02-02application/pdfporUniversidade Estadual do Oeste do ParanaPrograma de Pós-Graduação "Stricto Sensu" em Engenharia AgrícolaUNIOESTEBREngenhariaAnálise de dados espaciaisAnálise de diagnósticosDistribuições assimétricasGeoestatísticaVariabilidade espacial.Spatial data analysisDiagnostic analysisAsymmetric distributionsGeostatisticsSpatial variabilityCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAModelo espacial birnbaum-saunders aplicado a dados agrícolasBirnbaum-saunders spatial model applied for agricultural datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALtese__fabiana.pdfapplication/pdf3413093http://tede.unioeste.br:8080/tede/bitstream/tede/2703/1/tese__fabiana.pdf69eef866f8ca47e7714ae83768804879MD51tede/27032017-07-11 10:11:58.497oai:tede.unioeste.br:tede/2703Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2017-07-11T13:11:58Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Modelo espacial birnbaum-saunders aplicado a dados agrícolas
dc.title.alternative.eng.fl_str_mv Birnbaum-saunders spatial model applied for agricultural data
title Modelo espacial birnbaum-saunders aplicado a dados agrícolas
spellingShingle Modelo espacial birnbaum-saunders aplicado a dados agrícolas
Papani, Fabiana Magda Garcia
Análise de dados espaciais
Análise de diagnósticos
Distribuições assimétricas
Geoestatística
Variabilidade espacial.
Spatial data analysis
Diagnostic analysis
Asymmetric distributions
Geostatistics
Spatial variability
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Modelo espacial birnbaum-saunders aplicado a dados agrícolas
title_full Modelo espacial birnbaum-saunders aplicado a dados agrícolas
title_fullStr Modelo espacial birnbaum-saunders aplicado a dados agrícolas
title_full_unstemmed Modelo espacial birnbaum-saunders aplicado a dados agrícolas
title_sort Modelo espacial birnbaum-saunders aplicado a dados agrícolas
author Papani, Fabiana Magda Garcia
author_facet Papani, Fabiana Magda Garcia
author_role author
dc.contributor.advisor1.fl_str_mv Guedes, Luciana Pagliosa Carvalho
dc.contributor.advisor1ID.fl_str_mv CPF:00530938952
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3195220544719864
dc.contributor.referee1.fl_str_mv Lobos, Cristian Marcelo Villegas
dc.contributor.referee1ID.fl_str_mv CPF:23184049841
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/7868115035277497
dc.contributor.referee2.fl_str_mv Borssoi, Joelmir André
dc.contributor.referee2ID.fl_str_mv CPF:03829082959
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6054221596474652
dc.contributor.referee3.fl_str_mv Assumpção, Rosangela Aparecida Botinha
dc.contributor.referee3ID.fl_str_mv CPF:90336321600
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5532192685456247
dc.contributor.referee4.fl_str_mv Johann, Jerry Adriani
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/3499704308301708
dc.contributor.authorID.fl_str_mv CPF:18141875884
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5105432174707505
dc.contributor.author.fl_str_mv Papani, Fabiana Magda Garcia
contributor_str_mv Guedes, Luciana Pagliosa Carvalho
Lobos, Cristian Marcelo Villegas
Borssoi, Joelmir André
Assumpção, Rosangela Aparecida Botinha
Johann, Jerry Adriani
dc.subject.por.fl_str_mv Análise de dados espaciais
Análise de diagnósticos
Distribuições assimétricas
Geoestatística
Variabilidade espacial.
topic Análise de dados espaciais
Análise de diagnósticos
Distribuições assimétricas
Geoestatística
Variabilidade espacial.
Spatial data analysis
Diagnostic analysis
Asymmetric distributions
Geostatistics
Spatial variability
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Spatial data analysis
Diagnostic analysis
Asymmetric distributions
Geostatistics
Spatial variability
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description Understanding the spatial distribution knowledge regarding georeferenced data has been essencial to various areas including agriculture. Thus, several trials have been carried out. However, most of these studies assume that the underlying stochastic process is Gaussian. When the data associated with this process do not present normality, data transformations are applied. And though the use of these transformations has presented satisfactory results, it is important to consider models which take into account the characteristics of such phenomenon. It may be more appropriate than using a normal model. So, this trial aimed at proposing a spatial model based on the Birnbaum-Saunders distribution (BS). This distribution has been shown effective to model data that take positive values and whose behavior presents positive asymmetry and unimodality. Thefore, this trial has proposed a methodology that includes the formulation of the spatial Birnbaum-Saunders model , estimation of its parameters using maximum likelihood (ML), and application of diagnostic techniques which can detect the sensitivity of the model to atypical data and evaluate the proposed model through a simulation study and studies using real data sets of agricultural engineering. These data were obtadined in a 167.35-ha commercial area for grain production, in Cascavel city, to validate the studied model. In the study with simulated data and large samples, estimation parameters and diagnostic analysis showed a good performance. According to the study with real data, calculations of AIC (Akaike s information criterion) and BIC (Bayesian information criterion) indexes, Bayes factor as well as Q-Q plots constrution have shown that the proposed model is appropriate to fit the obtained data. Influential cases were detected, and their removal from data set caused a considerable change in contour maps. It is therefore concluided that Birnbaum-Saunders spatial model is adequate to carry out studies with spatially correlated data. Is is also an alternative model to the normal model when the data set present positive asymmetrical distribution
publishDate 2016
dc.date.available.fl_str_mv 2016-07-05
dc.date.issued.fl_str_mv 2016-02-02
dc.date.accessioned.fl_str_mv 2017-07-10T19:24:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PAPANI, Fabiana Magda Garcia. Birnbaum-saunders spatial model applied for agricultural data. 2016. 151 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br:8080/tede/handle/tede/2703
identifier_str_mv PAPANI, Fabiana Magda Garcia. Birnbaum-saunders spatial model applied for agricultural data. 2016. 151 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.
url http://tede.unioeste.br:8080/tede/handle/tede/2703
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Parana
dc.publisher.program.fl_str_mv Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Engenharia
publisher.none.fl_str_mv Universidade Estadual do Oeste do Parana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/2703/1/tese__fabiana.pdf
bitstream.checksum.fl_str_mv 69eef866f8ca47e7714ae83768804879
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723373996146688