Modelo espacial birnbaum-saunders aplicado a dados agrícolas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br:8080/tede/handle/tede/2703 |
Resumo: | Understanding the spatial distribution knowledge regarding georeferenced data has been essencial to various areas including agriculture. Thus, several trials have been carried out. However, most of these studies assume that the underlying stochastic process is Gaussian. When the data associated with this process do not present normality, data transformations are applied. And though the use of these transformations has presented satisfactory results, it is important to consider models which take into account the characteristics of such phenomenon. It may be more appropriate than using a normal model. So, this trial aimed at proposing a spatial model based on the Birnbaum-Saunders distribution (BS). This distribution has been shown effective to model data that take positive values and whose behavior presents positive asymmetry and unimodality. Thefore, this trial has proposed a methodology that includes the formulation of the spatial Birnbaum-Saunders model , estimation of its parameters using maximum likelihood (ML), and application of diagnostic techniques which can detect the sensitivity of the model to atypical data and evaluate the proposed model through a simulation study and studies using real data sets of agricultural engineering. These data were obtadined in a 167.35-ha commercial area for grain production, in Cascavel city, to validate the studied model. In the study with simulated data and large samples, estimation parameters and diagnostic analysis showed a good performance. According to the study with real data, calculations of AIC (Akaike s information criterion) and BIC (Bayesian information criterion) indexes, Bayes factor as well as Q-Q plots constrution have shown that the proposed model is appropriate to fit the obtained data. Influential cases were detected, and their removal from data set caused a considerable change in contour maps. It is therefore concluided that Birnbaum-Saunders spatial model is adequate to carry out studies with spatially correlated data. Is is also an alternative model to the normal model when the data set present positive asymmetrical distribution |
id |
UNIOESTE-1_c495638ed5a0845b98d90e0f1136b9ff |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/2703 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Guedes, Luciana Pagliosa CarvalhoCPF:00530938952http://lattes.cnpq.br/3195220544719864Lobos, Cristian Marcelo VillegasCPF:23184049841http://lattes.cnpq.br/7868115035277497Borssoi, Joelmir AndréCPF:03829082959http://lattes.cnpq.br/6054221596474652Assumpção, Rosangela Aparecida BotinhaCPF:90336321600http://lattes.cnpq.br/5532192685456247Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708CPF:18141875884http://lattes.cnpq.br/5105432174707505Papani, Fabiana Magda Garcia2017-07-10T19:24:09Z2016-07-052016-02-02PAPANI, Fabiana Magda Garcia. Birnbaum-saunders spatial model applied for agricultural data. 2016. 151 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.http://tede.unioeste.br:8080/tede/handle/tede/2703Understanding the spatial distribution knowledge regarding georeferenced data has been essencial to various areas including agriculture. Thus, several trials have been carried out. However, most of these studies assume that the underlying stochastic process is Gaussian. When the data associated with this process do not present normality, data transformations are applied. And though the use of these transformations has presented satisfactory results, it is important to consider models which take into account the characteristics of such phenomenon. It may be more appropriate than using a normal model. So, this trial aimed at proposing a spatial model based on the Birnbaum-Saunders distribution (BS). This distribution has been shown effective to model data that take positive values and whose behavior presents positive asymmetry and unimodality. Thefore, this trial has proposed a methodology that includes the formulation of the spatial Birnbaum-Saunders model , estimation of its parameters using maximum likelihood (ML), and application of diagnostic techniques which can detect the sensitivity of the model to atypical data and evaluate the proposed model through a simulation study and studies using real data sets of agricultural engineering. These data were obtadined in a 167.35-ha commercial area for grain production, in Cascavel city, to validate the studied model. In the study with simulated data and large samples, estimation parameters and diagnostic analysis showed a good performance. According to the study with real data, calculations of AIC (Akaike s information criterion) and BIC (Bayesian information criterion) indexes, Bayes factor as well as Q-Q plots constrution have shown that the proposed model is appropriate to fit the obtained data. Influential cases were detected, and their removal from data set caused a considerable change in contour maps. It is therefore concluided that Birnbaum-Saunders spatial model is adequate to carry out studies with spatially correlated data. Is is also an alternative model to the normal model when the data set present positive asymmetrical distributionO conhecimento da distribuição espacial de dados georrefenciados é de interesse de diversas áreas do conhecimento, incluindo a área agrícola. Neste sentido, diversos trabalhos já foram realizados; no entanto, a maioria destes trabalhos assumem que o processo estocástico subjacente é gaussiano. Quando os dados associados com este processo não apresentam normalidade, transformações de dados são usadas. E ainda que o uso dessas transformações tenha apresentado resultados satisfatórios, considerar modelos que levem em conta as características do fenômeno pode ser mais adequado do que a utilização do modelo normal. O objetivo deste trabalho é propor um modelo espacial baseado na distribuição Birnbaum-Saunders (BS). Esta distribuição tem se mostrado eficiente para modelar conjuntos de dados formados por valores estritamente positivos e cujo comportamento apresenta assimetria positiva e unimodalidade. A metodologia proposta neste trabalho inclui a formulação do modelo espacial Birnbaum-Saunders, a estimação de seus parâmetros utilizando o método de máxima verossimilhança (ML), a aplicação de técnicas de diagnóstico que permitem detectar a sensibilidade do modelo a dados atípicos, a avaliação do modelo proposto por um estudo de simulação e aplicação da metodologia desenvolvida em análise de dados reais da área agrícola. Os dados utilizados para validação do modelo estudado foram obtidos em uma área comercial de produção de grãos de 167,35 ha de Cascavel. No estudo com dados simulados, para amostras grandes, a estimação dos parâmetros e a análise de diagnóstico apresentaram boa performance. No estudo com dados reais, os cálculos dos índices AIC, BIC e fator Bayes bem como a construção de Q-Q plots mostraram que o modelo proposto é adequado para ajustar os dados. Casos influentes foram detectados e suas retiradas do conjunto de dados causaram uma mudança considerável nos mapas de contorno. Conclui-se portanto, que o modelo espacial Birnbaum-Saunders é adequado para realização de estudos com dados espacialmente correlacionados, e é um modelo alternativo ao modelo normal quando o conjunto de dados apresenta distribuição assimétrica positivaMade available in DSpace on 2017-07-10T19:24:09Z (GMT). No. of bitstreams: 1 tese__fabiana.pdf: 3413093 bytes, checksum: 69eef866f8ca47e7714ae83768804879 (MD5) Previous issue date: 2016-02-02application/pdfporUniversidade Estadual do Oeste do ParanaPrograma de Pós-Graduação "Stricto Sensu" em Engenharia AgrícolaUNIOESTEBREngenhariaAnálise de dados espaciaisAnálise de diagnósticosDistribuições assimétricasGeoestatísticaVariabilidade espacial.Spatial data analysisDiagnostic analysisAsymmetric distributionsGeostatisticsSpatial variabilityCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAModelo espacial birnbaum-saunders aplicado a dados agrícolasBirnbaum-saunders spatial model applied for agricultural datainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALtese__fabiana.pdfapplication/pdf3413093http://tede.unioeste.br:8080/tede/bitstream/tede/2703/1/tese__fabiana.pdf69eef866f8ca47e7714ae83768804879MD51tede/27032017-07-11 10:11:58.497oai:tede.unioeste.br:tede/2703Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2017-07-11T13:11:58Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Modelo espacial birnbaum-saunders aplicado a dados agrícolas |
dc.title.alternative.eng.fl_str_mv |
Birnbaum-saunders spatial model applied for agricultural data |
title |
Modelo espacial birnbaum-saunders aplicado a dados agrícolas |
spellingShingle |
Modelo espacial birnbaum-saunders aplicado a dados agrícolas Papani, Fabiana Magda Garcia Análise de dados espaciais Análise de diagnósticos Distribuições assimétricas Geoestatística Variabilidade espacial. Spatial data analysis Diagnostic analysis Asymmetric distributions Geostatistics Spatial variability CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
title_short |
Modelo espacial birnbaum-saunders aplicado a dados agrícolas |
title_full |
Modelo espacial birnbaum-saunders aplicado a dados agrícolas |
title_fullStr |
Modelo espacial birnbaum-saunders aplicado a dados agrícolas |
title_full_unstemmed |
Modelo espacial birnbaum-saunders aplicado a dados agrícolas |
title_sort |
Modelo espacial birnbaum-saunders aplicado a dados agrícolas |
author |
Papani, Fabiana Magda Garcia |
author_facet |
Papani, Fabiana Magda Garcia |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Guedes, Luciana Pagliosa Carvalho |
dc.contributor.advisor1ID.fl_str_mv |
CPF:00530938952 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3195220544719864 |
dc.contributor.referee1.fl_str_mv |
Lobos, Cristian Marcelo Villegas |
dc.contributor.referee1ID.fl_str_mv |
CPF:23184049841 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/7868115035277497 |
dc.contributor.referee2.fl_str_mv |
Borssoi, Joelmir André |
dc.contributor.referee2ID.fl_str_mv |
CPF:03829082959 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/6054221596474652 |
dc.contributor.referee3.fl_str_mv |
Assumpção, Rosangela Aparecida Botinha |
dc.contributor.referee3ID.fl_str_mv |
CPF:90336321600 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/5532192685456247 |
dc.contributor.referee4.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
dc.contributor.authorID.fl_str_mv |
CPF:18141875884 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5105432174707505 |
dc.contributor.author.fl_str_mv |
Papani, Fabiana Magda Garcia |
contributor_str_mv |
Guedes, Luciana Pagliosa Carvalho Lobos, Cristian Marcelo Villegas Borssoi, Joelmir André Assumpção, Rosangela Aparecida Botinha Johann, Jerry Adriani |
dc.subject.por.fl_str_mv |
Análise de dados espaciais Análise de diagnósticos Distribuições assimétricas Geoestatística Variabilidade espacial. |
topic |
Análise de dados espaciais Análise de diagnósticos Distribuições assimétricas Geoestatística Variabilidade espacial. Spatial data analysis Diagnostic analysis Asymmetric distributions Geostatistics Spatial variability CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
dc.subject.eng.fl_str_mv |
Spatial data analysis Diagnostic analysis Asymmetric distributions Geostatistics Spatial variability |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
description |
Understanding the spatial distribution knowledge regarding georeferenced data has been essencial to various areas including agriculture. Thus, several trials have been carried out. However, most of these studies assume that the underlying stochastic process is Gaussian. When the data associated with this process do not present normality, data transformations are applied. And though the use of these transformations has presented satisfactory results, it is important to consider models which take into account the characteristics of such phenomenon. It may be more appropriate than using a normal model. So, this trial aimed at proposing a spatial model based on the Birnbaum-Saunders distribution (BS). This distribution has been shown effective to model data that take positive values and whose behavior presents positive asymmetry and unimodality. Thefore, this trial has proposed a methodology that includes the formulation of the spatial Birnbaum-Saunders model , estimation of its parameters using maximum likelihood (ML), and application of diagnostic techniques which can detect the sensitivity of the model to atypical data and evaluate the proposed model through a simulation study and studies using real data sets of agricultural engineering. These data were obtadined in a 167.35-ha commercial area for grain production, in Cascavel city, to validate the studied model. In the study with simulated data and large samples, estimation parameters and diagnostic analysis showed a good performance. According to the study with real data, calculations of AIC (Akaike s information criterion) and BIC (Bayesian information criterion) indexes, Bayes factor as well as Q-Q plots constrution have shown that the proposed model is appropriate to fit the obtained data. Influential cases were detected, and their removal from data set caused a considerable change in contour maps. It is therefore concluided that Birnbaum-Saunders spatial model is adequate to carry out studies with spatially correlated data. Is is also an alternative model to the normal model when the data set present positive asymmetrical distribution |
publishDate |
2016 |
dc.date.available.fl_str_mv |
2016-07-05 |
dc.date.issued.fl_str_mv |
2016-02-02 |
dc.date.accessioned.fl_str_mv |
2017-07-10T19:24:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PAPANI, Fabiana Magda Garcia. Birnbaum-saunders spatial model applied for agricultural data. 2016. 151 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br:8080/tede/handle/tede/2703 |
identifier_str_mv |
PAPANI, Fabiana Magda Garcia. Birnbaum-saunders spatial model applied for agricultural data. 2016. 151 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016. |
url |
http://tede.unioeste.br:8080/tede/handle/tede/2703 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Parana |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
BR |
dc.publisher.department.fl_str_mv |
Engenharia |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Parana |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/2703/1/tese__fabiana.pdf |
bitstream.checksum.fl_str_mv |
69eef866f8ca47e7714ae83768804879 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723373996146688 |