Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br/handle/tede/3764 |
Resumo: | Precision Agriculture (AP) uses technologies aimed at increasing productivity and reducing environmental impact through localized application of agricultural inputs. In order to make AP economically feasible, it is essential to improve current methodologies, as well as to propose new ones, such as the design of management areas (MZs) from productivity data, topographic, and soil attributes, among others, to determine which are heterogeneous subareas among themselves in the same area. In this context, the main objective of this research was to evaluate three distance metrics (Diagonal, Euclidian, and Mahalanobis) through FUZME and SDUM software (for the definition of management units) using the fuzzy c-means algorithm, and, at a further moment, to evaluate the cultures of soybeans and corn, as well as the association between them. On the first scientific paper, using data corresponding to four distinct areas, the three metrics with original and normalized data associated with soybean yield were evaluated. For area A, the Diagonal and Mahalanobis distances exempted the need for normalization of the variables, presenting areas that were identical for both versions. After the normalization of the data, the Euclidian distance presented a better delineation in its MZs for area A. For areas B, C, and D it was not possible to reach conclusions regarding the best performance, since only one variable was used for the process of MZs, and that has directly influenced the results. On the second scientific paper, data corresponding to three distinct areas were applied to analyze the use of soybean and corn yields, as well as the association between them, in the selection of variables to define MZs. Based on the variables available for each of the areas, the selection was carried out using the spatial correlation method, considering, for each one of the areas, the three target yields (soybean, corn, and soybean+corn). The type of productivity used demonstrated two different outcomes: first in the variable selection process, where its alternation resulted in different selections for the same area, and second, in the evaluation of the defined MZs, where even when the same variables were selected in the definition of the MZs, the performances of the MZs were different. After the validation methods applied, it was verified that the best target yield was soybean+corn, reasserting the idea of being better to use these two cultures, together, when defining the MZs of an area with rotating crops of soybean and corn. |
id |
UNIOESTE-1_c74167d683e8befc3cfe94f935ee8a55 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/3764 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Souza, Eduardo Godoy dehttp://lattes.cnpq.br/8600401135679947Bazzi, Claudio Leoneshttp://lattes.cnpq.br/2170981286370303Schenatto, Kelynhttp://lattes.cnpq.br/1434499828357999Maggi, Marcio Furlanhttp://lattes.cnpq.br/8677221771738301Johann, Jerry Adrianihttp://lattes.cnpq.br/3499704308301708http://lattes.cnpq.br/8021883910032304Fontana, Fabiane Sorbar2018-06-15T20:19:22Z2017-07-19FONTANA, Fabiane Sorbar. Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias. 2017. 69 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2017.http://tede.unioeste.br/handle/tede/3764Precision Agriculture (AP) uses technologies aimed at increasing productivity and reducing environmental impact through localized application of agricultural inputs. In order to make AP economically feasible, it is essential to improve current methodologies, as well as to propose new ones, such as the design of management areas (MZs) from productivity data, topographic, and soil attributes, among others, to determine which are heterogeneous subareas among themselves in the same area. In this context, the main objective of this research was to evaluate three distance metrics (Diagonal, Euclidian, and Mahalanobis) through FUZME and SDUM software (for the definition of management units) using the fuzzy c-means algorithm, and, at a further moment, to evaluate the cultures of soybeans and corn, as well as the association between them. On the first scientific paper, using data corresponding to four distinct areas, the three metrics with original and normalized data associated with soybean yield were evaluated. For area A, the Diagonal and Mahalanobis distances exempted the need for normalization of the variables, presenting areas that were identical for both versions. After the normalization of the data, the Euclidian distance presented a better delineation in its MZs for area A. For areas B, C, and D it was not possible to reach conclusions regarding the best performance, since only one variable was used for the process of MZs, and that has directly influenced the results. On the second scientific paper, data corresponding to three distinct areas were applied to analyze the use of soybean and corn yields, as well as the association between them, in the selection of variables to define MZs. Based on the variables available for each of the areas, the selection was carried out using the spatial correlation method, considering, for each one of the areas, the three target yields (soybean, corn, and soybean+corn). The type of productivity used demonstrated two different outcomes: first in the variable selection process, where its alternation resulted in different selections for the same area, and second, in the evaluation of the defined MZs, where even when the same variables were selected in the definition of the MZs, the performances of the MZs were different. After the validation methods applied, it was verified that the best target yield was soybean+corn, reasserting the idea of being better to use these two cultures, together, when defining the MZs of an area with rotating crops of soybean and corn.A Agricultura de Precisão (AP) utiliza tecnologias objetivando o aumento da produtividade e redução do impacto ambiental por meio de aplicação localizada de insumos agrícolas. Para viabilizar economicamente a AP, é essencial aprimorar as metodologias atuais, bem como propor novas, como, por exemplo, o delineamento de zonas de manejo (ZMs) a partir de dados de produtividade, atributos topográficos e do solo, entre outros, utilizados a fim de determinar subáreas heterogêneas entre si em uma mesma área. Neste contexto, este trabalho teve como principal objetivo avaliar três métricas de distâncias (Diagonal, Euclidiana e Mahalanobis) junto aos Softwares FUZME e SDUM (Software para a definição de unidades de manejo), que utilizam o algoritmo fuzzy c-means, e, em um segundo momento, avaliar também as culturas de soja e milho, assim como a associação entre elas. No primeiro artigo, utilizando dados correspondentes a quatro áreas distintas, avaliaram-se as três métricas com dados originais e normalizados associados à produtividade de soja. Para a área A, as distâncias Diagonal e Mahalanobis dispensaram a necessidade de normalização das variáveis, apresentando áreas idênticas para as duas versões. Após a normalização dos dados, a distância Euclidiana apresentou um melhor delineamento em suas ZMs para a área A. Para as áreas B, C e D não foi possível obter conclusões quanto ao melhor desempenho, visto que o fato de ser utilizado apenas uma variável para o processo de definição de ZMs influenciou diretamente nos resultados obtidos. No segundo artigo, dados correspondentes a três áreas distintas foram utilizados para analisar o uso de produtividades de soja e milho, assim como a associação entre elas, na seleção de variáveis para definição de ZMs. A partir das variáveis disponíveis para cada uma das áreas foi realizada a seleção destas através do método da correlação espacial, levando em consideração, para cada uma das áreas, as três produtividades-alvo (soja, milho e soja+milho). O tipo de produtividade utilizada repercutiu de duas formas diferentes: primeiro no processo de seleção de variáveis, onde a sua alternância resultou em seleções diferenciadas para uma mesma área; e em um segundo momento, na avaliação das ZMs definidas, onde mesmo quando as mesmas variáveis foram selecionadas na definição das ZMs, os desempenhos das ZMs foram diferentes. Após os métodos de validação aplicados, verificou-se que a melhor produtividade-alvo foi soja+milho, reforçando a ideia de ser útil a utilização destas duas culturas, em conjunto, na definição das ZMs de uma área com alternância de produção de soja e milho.Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2018-06-15T20:19:22Z No. of bitstreams: 2 Fabiane_Fontana2018.pdf: 2677532 bytes, checksum: 3036328537227cc96b8ea368e893f2fc (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-06-15T20:19:22Z (GMT). No. of bitstreams: 2 Fabiane_Fontana2018.pdf: 2677532 bytes, checksum: 3036328537227cc96b8ea368e893f2fc (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-07-19Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAgricultura de precisãoUnidades de manejoMétodos de agrupamento de dadosClusterizaçãoData grouping methodsPrecision agricultureManagement unitsClusteringCIENCIAS AGRARIAS::ENGENHARIA AGRICOLADefinição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distânciasManagement zones definition using the clustering algorithm fuzzy c-means with associated varied distance metricsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5347692450416052129600600600600221437444286838201591854457215887615552075167498588264571reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALFabiane_Fontana2018.pdfFabiane_Fontana2018.pdfapplication/pdf2677532http://tede.unioeste.br:8080/tede/bitstream/tede/3764/5/Fabiane_Fontana2018.pdf3036328537227cc96b8ea368e893f2fcMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede.unioeste.br:8080/tede/bitstream/tede/3764/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3764/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/3764/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/3764/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/37642018-06-15 17:19:22.863oai:tede.unioeste.br:tede/3764Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2018-06-15T20:19:22Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias |
dc.title.alternative.eng.fl_str_mv |
Management zones definition using the clustering algorithm fuzzy c-means with associated varied distance metrics |
title |
Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias |
spellingShingle |
Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias Fontana, Fabiane Sorbar Agricultura de precisão Unidades de manejo Métodos de agrupamento de dados Clusterização Data grouping methods Precision agriculture Management units Clustering CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
title_short |
Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias |
title_full |
Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias |
title_fullStr |
Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias |
title_full_unstemmed |
Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias |
title_sort |
Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias |
author |
Fontana, Fabiane Sorbar |
author_facet |
Fontana, Fabiane Sorbar |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Souza, Eduardo Godoy de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8600401135679947 |
dc.contributor.advisor-co1.fl_str_mv |
Bazzi, Claudio Leones |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2170981286370303 |
dc.contributor.referee1.fl_str_mv |
Schenatto, Kelyn |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1434499828357999 |
dc.contributor.referee2.fl_str_mv |
Maggi, Marcio Furlan |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/8677221771738301 |
dc.contributor.referee3.fl_str_mv |
Johann, Jerry Adriani |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/3499704308301708 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8021883910032304 |
dc.contributor.author.fl_str_mv |
Fontana, Fabiane Sorbar |
contributor_str_mv |
Souza, Eduardo Godoy de Bazzi, Claudio Leones Schenatto, Kelyn Maggi, Marcio Furlan Johann, Jerry Adriani |
dc.subject.por.fl_str_mv |
Agricultura de precisão Unidades de manejo Métodos de agrupamento de dados Clusterização Data grouping methods |
topic |
Agricultura de precisão Unidades de manejo Métodos de agrupamento de dados Clusterização Data grouping methods Precision agriculture Management units Clustering CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
dc.subject.eng.fl_str_mv |
Precision agriculture Management units Clustering |
dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
description |
Precision Agriculture (AP) uses technologies aimed at increasing productivity and reducing environmental impact through localized application of agricultural inputs. In order to make AP economically feasible, it is essential to improve current methodologies, as well as to propose new ones, such as the design of management areas (MZs) from productivity data, topographic, and soil attributes, among others, to determine which are heterogeneous subareas among themselves in the same area. In this context, the main objective of this research was to evaluate three distance metrics (Diagonal, Euclidian, and Mahalanobis) through FUZME and SDUM software (for the definition of management units) using the fuzzy c-means algorithm, and, at a further moment, to evaluate the cultures of soybeans and corn, as well as the association between them. On the first scientific paper, using data corresponding to four distinct areas, the three metrics with original and normalized data associated with soybean yield were evaluated. For area A, the Diagonal and Mahalanobis distances exempted the need for normalization of the variables, presenting areas that were identical for both versions. After the normalization of the data, the Euclidian distance presented a better delineation in its MZs for area A. For areas B, C, and D it was not possible to reach conclusions regarding the best performance, since only one variable was used for the process of MZs, and that has directly influenced the results. On the second scientific paper, data corresponding to three distinct areas were applied to analyze the use of soybean and corn yields, as well as the association between them, in the selection of variables to define MZs. Based on the variables available for each of the areas, the selection was carried out using the spatial correlation method, considering, for each one of the areas, the three target yields (soybean, corn, and soybean+corn). The type of productivity used demonstrated two different outcomes: first in the variable selection process, where its alternation resulted in different selections for the same area, and second, in the evaluation of the defined MZs, where even when the same variables were selected in the definition of the MZs, the performances of the MZs were different. After the validation methods applied, it was verified that the best target yield was soybean+corn, reasserting the idea of being better to use these two cultures, together, when defining the MZs of an area with rotating crops of soybean and corn. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-07-19 |
dc.date.accessioned.fl_str_mv |
2018-06-15T20:19:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FONTANA, Fabiane Sorbar. Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias. 2017. 69 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2017. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br/handle/tede/3764 |
identifier_str_mv |
FONTANA, Fabiane Sorbar. Definição de zonas de manejo utilizando algoritmo de agrupamento fuzzy c-means com variadas métricas de distâncias. 2017. 69 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2017. |
url |
http://tede.unioeste.br/handle/tede/3764 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.relation.cnpq.fl_str_mv |
9185445721588761555 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/3764/5/Fabiane_Fontana2018.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/3764/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/3764/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/3764/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/3764/1/license.txt |
bitstream.checksum.fl_str_mv |
3036328537227cc96b8ea368e893f2fc 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723398611468288 |