Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja

Detalhes bibliográficos
Autor(a) principal: Camicia, Rafaela Greici da Motta
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br/handle/tede/4103
Resumo: The selection of variables for the management zone design (MZs) generally uses productivity data from previous years; however, questions remain about the type and amount of data needed to classify these MZs, as well as whether data normalization interferes with this selection. All of these approaches merely identify the potential of the MZs; additional research is needed to test whether the identified MZs actually function as effective management zones to increase productivity, and plant density in soybean cultivation is a relevant management practice for reaching high grain yields. In this context, the present study was carried out to verify if the selection of the variables used for the design of MZs is influenced when data from one or more years of productivity are used, and if the normalization methods can influence this selection. The three main techniques of data normalization proposed in the literature with data of up to five years of productivity were evaluated. The behavior of soybean yield under different seeding densities was evaluated in two pre-established management zones. The experiments were carried out in two commercial agricultural areas, located in the state of Paraná, Brazil, where corn and soybean was grown, with data obtained between the years of 2012 and 2018. With the experiments, it was possible to conclude that the productivity did not present spatial autocorrelation in some simulations; however, this did not influence the selection of the variables. Among the studied variables, the altitude and soil mechanical resistance to penetration (RSP) correlated with soybean and corn crop productivity in both study areas; the number of harvests negatively influenced the analysis of spatial correlation between yield and soil attributes; the amplitude normalization method showed the best results of variance (VR) and ANOVA reduction and the mean one showed the greatest reduction of the coefficient of variation (CV). ZM with higher productive potential presented better but not expressive results regarding productivity, since there was no statistical difference between the means. Seed densities produced yield differences; for soybean with line spacing of 0.70 m, the density of 15 plants m-1 provided the highest yields; and, by means of economic analysis, it is confirmed that the use of this density in the whole area is the best option to maximize final yield.
id UNIOESTE-1_d446052d7303b728826c2cfad2cdb043
oai_identifier_str oai:tede.unioeste.br:tede/4103
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Maggi, Marcio Furlanhttp://lattes.cnpq.br/8677221771738301Bazzi, Claudio LeonesSchenatto , Kelynhttp://lattes.cnpq.br/1434499828357999Rocha, Davi Marcondeshttp://lattes.cnpq.br/2423987011078680Coelho , Silvia Renata Machadohttp://lattes.cnpq.br/3554106124561773Mercante , Eriveltohttp://lattes.cnpq.br/4061800207647478http://lattes.cnpq.br/0668333078007212Camicia, Rafaela Greici da Motta2019-02-19T17:12:19Z2018-12-03CAMICIA, Rafaela Greici da Motta. Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja. 2018. 80 f.. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.http://tede.unioeste.br/handle/tede/4103The selection of variables for the management zone design (MZs) generally uses productivity data from previous years; however, questions remain about the type and amount of data needed to classify these MZs, as well as whether data normalization interferes with this selection. All of these approaches merely identify the potential of the MZs; additional research is needed to test whether the identified MZs actually function as effective management zones to increase productivity, and plant density in soybean cultivation is a relevant management practice for reaching high grain yields. In this context, the present study was carried out to verify if the selection of the variables used for the design of MZs is influenced when data from one or more years of productivity are used, and if the normalization methods can influence this selection. The three main techniques of data normalization proposed in the literature with data of up to five years of productivity were evaluated. The behavior of soybean yield under different seeding densities was evaluated in two pre-established management zones. The experiments were carried out in two commercial agricultural areas, located in the state of Paraná, Brazil, where corn and soybean was grown, with data obtained between the years of 2012 and 2018. With the experiments, it was possible to conclude that the productivity did not present spatial autocorrelation in some simulations; however, this did not influence the selection of the variables. Among the studied variables, the altitude and soil mechanical resistance to penetration (RSP) correlated with soybean and corn crop productivity in both study areas; the number of harvests negatively influenced the analysis of spatial correlation between yield and soil attributes; the amplitude normalization method showed the best results of variance (VR) and ANOVA reduction and the mean one showed the greatest reduction of the coefficient of variation (CV). ZM with higher productive potential presented better but not expressive results regarding productivity, since there was no statistical difference between the means. Seed densities produced yield differences; for soybean with line spacing of 0.70 m, the density of 15 plants m-1 provided the highest yields; and, by means of economic analysis, it is confirmed that the use of this density in the whole area is the best option to maximize final yield.A seleção de variáveis para o delineamento de zonas de manejo (ZMs) geralmente usa dados da produtividade de anos anteriores; porém, permanecem questões sobre o tipo e a quantidade de dados necessários para classificar estas ZMs, assim como se a normalização de dados interfere nesta seleção. Todas essas abordagens meramente identificam o potencial das ZMs; pesquisas adicionais são necessárias para testar se as ZMs identificadas funcionam de fato como zonas de gerenciamento efetivas para incrementar a produtividade, sendo a densidade de plantas no cultivo de soja uma prática de manejo relevante para o alcance de alta produtividade de grãos. Neste contexto, buscou-se estudar se a seleção das variáveis utilizadas para o delineamento de ZMs é influenciada quando se utilizam dados de um ou mais anos de produtividade, e se os métodos de normalização podem influenciar nesta seleção. Foram avaliadas as três principais técnicas de normalização de dados propostas na literatura com dados de até cinco anos de produtividade. Avaliou-se também o comportamento do rendimento da cultura de soja sob a aplicação de diferentes densidades de semeadura em duas zonas de manejo pré-estabelecidas. Os experimentos foram realizados em duas áreas agrícola comerciais, localizadas no estado do Paraná, nas quais se cultivaram milho e soja, com dados obtidos entre os anos de 2012 e 2018. Com os experimentos realizados foi possível concluir que a produtividade não apresentou autocorrelação espacial em algumas simulações; entretanto, isso não influenciou na seleção das variáveis. Dentre as variáveis estudadas, a altitude e a resistência mecânica do solo à penetração (RSP) tiveram correlação com a produtividade das culturas da soja e do milho em ambas as áreas estudas; o número de safras influenciou negativamente na análise de correlação espacial entre a produtividade e os atributos do solo; o método de normalização amplitude apresentou os melhores resultados de redução da variância (VR) e ANOVA e o da média apresentou a maior redução do coeficiente de variação (CV). A ZM com maior potencial produtivo apresentou resultados melhores, mas não expressivos no que diz respeito à produtividade, já que não houve diferença estatística entre as médias. As densidades de semeadura resultaram em diferenças de produções; para a soja com espaçamento entre linhas de 0,70 m, a densidade de 15 plantas m-1 proporcionou as maiores produtividades; e, por meio da análise econômica, confirma-se ser a utilização desta densidade em toda a área a melhor opção para maximizar o rendimento final.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2019-02-19T17:12:19Z No. of bitstreams: 2 Rafaela_Camicia_2018.pdf: 1387248 bytes, checksum: 68c2f157ecc1e1a0847704456e90637b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-02-19T17:12:19Z (GMT). No. of bitstreams: 2 Rafaela_Camicia_2018.pdf: 1387248 bytes, checksum: 68c2f157ecc1e1a0847704456e90637b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-12-03application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAgricultura de precisãoSeleção de atributosUnidades de manejoProdutividade.Precision agricultureSelection of attributesManagement unitsProductivityCIENCIAS AGRARIAS::ENGENHARIA AGRICOLASeleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de sojaSelection of variables for generation of management zones and different soybean densitiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-534769245041605212960060060022143744428683820159185445721588761555reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALRafaela_Camicia_2018.pdfRafaela_Camicia_2018.pdfapplication/pdf1387248http://tede.unioeste.br:8080/tede/bitstream/tede/4103/5/Rafaela_Camicia_2018.pdf68c2f157ecc1e1a0847704456e90637bMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/4103/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/4103/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/4103/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/4103/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/41032019-02-19 14:12:20.031oai:tede.unioeste.br:tede/4103Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2019-02-19T17:12:20Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja
dc.title.alternative.eng.fl_str_mv Selection of variables for generation of management zones and different soybean densities
title Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja
spellingShingle Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja
Camicia, Rafaela Greici da Motta
Agricultura de precisão
Seleção de atributos
Unidades de manejo
Produtividade.
Precision agriculture
Selection of attributes
Management units
Productivity
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja
title_full Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja
title_fullStr Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja
title_full_unstemmed Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja
title_sort Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja
author Camicia, Rafaela Greici da Motta
author_facet Camicia, Rafaela Greici da Motta
author_role author
dc.contributor.advisor1.fl_str_mv Maggi, Marcio Furlan
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8677221771738301
dc.contributor.advisor-co1.fl_str_mv Bazzi, Claudio Leones
dc.contributor.referee1.fl_str_mv Schenatto , Kelyn
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1434499828357999
dc.contributor.referee2.fl_str_mv Rocha, Davi Marcondes
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2423987011078680
dc.contributor.referee3.fl_str_mv Coelho , Silvia Renata Machado
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3554106124561773
dc.contributor.referee4.fl_str_mv Mercante , Erivelto
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/4061800207647478
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0668333078007212
dc.contributor.author.fl_str_mv Camicia, Rafaela Greici da Motta
contributor_str_mv Maggi, Marcio Furlan
Bazzi, Claudio Leones
Schenatto , Kelyn
Rocha, Davi Marcondes
Coelho , Silvia Renata Machado
Mercante , Erivelto
dc.subject.por.fl_str_mv Agricultura de precisão
Seleção de atributos
Unidades de manejo
Produtividade.
topic Agricultura de precisão
Seleção de atributos
Unidades de manejo
Produtividade.
Precision agriculture
Selection of attributes
Management units
Productivity
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Precision agriculture
Selection of attributes
Management units
Productivity
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description The selection of variables for the management zone design (MZs) generally uses productivity data from previous years; however, questions remain about the type and amount of data needed to classify these MZs, as well as whether data normalization interferes with this selection. All of these approaches merely identify the potential of the MZs; additional research is needed to test whether the identified MZs actually function as effective management zones to increase productivity, and plant density in soybean cultivation is a relevant management practice for reaching high grain yields. In this context, the present study was carried out to verify if the selection of the variables used for the design of MZs is influenced when data from one or more years of productivity are used, and if the normalization methods can influence this selection. The three main techniques of data normalization proposed in the literature with data of up to five years of productivity were evaluated. The behavior of soybean yield under different seeding densities was evaluated in two pre-established management zones. The experiments were carried out in two commercial agricultural areas, located in the state of Paraná, Brazil, where corn and soybean was grown, with data obtained between the years of 2012 and 2018. With the experiments, it was possible to conclude that the productivity did not present spatial autocorrelation in some simulations; however, this did not influence the selection of the variables. Among the studied variables, the altitude and soil mechanical resistance to penetration (RSP) correlated with soybean and corn crop productivity in both study areas; the number of harvests negatively influenced the analysis of spatial correlation between yield and soil attributes; the amplitude normalization method showed the best results of variance (VR) and ANOVA reduction and the mean one showed the greatest reduction of the coefficient of variation (CV). ZM with higher productive potential presented better but not expressive results regarding productivity, since there was no statistical difference between the means. Seed densities produced yield differences; for soybean with line spacing of 0.70 m, the density of 15 plants m-1 provided the highest yields; and, by means of economic analysis, it is confirmed that the use of this density in the whole area is the best option to maximize final yield.
publishDate 2018
dc.date.issued.fl_str_mv 2018-12-03
dc.date.accessioned.fl_str_mv 2019-02-19T17:12:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAMICIA, Rafaela Greici da Motta. Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja. 2018. 80 f.. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br/handle/tede/4103
identifier_str_mv CAMICIA, Rafaela Greici da Motta. Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja. 2018. 80 f.. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.
url http://tede.unioeste.br/handle/tede/4103
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.relation.cnpq.fl_str_mv 9185445721588761555
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/4103/5/Rafaela_Camicia_2018.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/4103/2/license_url
http://tede.unioeste.br:8080/tede/bitstream/tede/4103/3/license_text
http://tede.unioeste.br:8080/tede/bitstream/tede/4103/4/license_rdf
http://tede.unioeste.br:8080/tede/bitstream/tede/4103/1/license.txt
bitstream.checksum.fl_str_mv 68c2f157ecc1e1a0847704456e90637b
321f3992dd3875151d8801b773ab32ed
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723408478568448