Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do UNIOESTE |
Texto Completo: | http://tede.unioeste.br/handle/tede/4103 |
Resumo: | The selection of variables for the management zone design (MZs) generally uses productivity data from previous years; however, questions remain about the type and amount of data needed to classify these MZs, as well as whether data normalization interferes with this selection. All of these approaches merely identify the potential of the MZs; additional research is needed to test whether the identified MZs actually function as effective management zones to increase productivity, and plant density in soybean cultivation is a relevant management practice for reaching high grain yields. In this context, the present study was carried out to verify if the selection of the variables used for the design of MZs is influenced when data from one or more years of productivity are used, and if the normalization methods can influence this selection. The three main techniques of data normalization proposed in the literature with data of up to five years of productivity were evaluated. The behavior of soybean yield under different seeding densities was evaluated in two pre-established management zones. The experiments were carried out in two commercial agricultural areas, located in the state of Paraná, Brazil, where corn and soybean was grown, with data obtained between the years of 2012 and 2018. With the experiments, it was possible to conclude that the productivity did not present spatial autocorrelation in some simulations; however, this did not influence the selection of the variables. Among the studied variables, the altitude and soil mechanical resistance to penetration (RSP) correlated with soybean and corn crop productivity in both study areas; the number of harvests negatively influenced the analysis of spatial correlation between yield and soil attributes; the amplitude normalization method showed the best results of variance (VR) and ANOVA reduction and the mean one showed the greatest reduction of the coefficient of variation (CV). ZM with higher productive potential presented better but not expressive results regarding productivity, since there was no statistical difference between the means. Seed densities produced yield differences; for soybean with line spacing of 0.70 m, the density of 15 plants m-1 provided the highest yields; and, by means of economic analysis, it is confirmed that the use of this density in the whole area is the best option to maximize final yield. |
id |
UNIOESTE-1_d446052d7303b728826c2cfad2cdb043 |
---|---|
oai_identifier_str |
oai:tede.unioeste.br:tede/4103 |
network_acronym_str |
UNIOESTE-1 |
network_name_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
repository_id_str |
|
spelling |
Maggi, Marcio Furlanhttp://lattes.cnpq.br/8677221771738301Bazzi, Claudio LeonesSchenatto , Kelynhttp://lattes.cnpq.br/1434499828357999Rocha, Davi Marcondeshttp://lattes.cnpq.br/2423987011078680Coelho , Silvia Renata Machadohttp://lattes.cnpq.br/3554106124561773Mercante , Eriveltohttp://lattes.cnpq.br/4061800207647478http://lattes.cnpq.br/0668333078007212Camicia, Rafaela Greici da Motta2019-02-19T17:12:19Z2018-12-03CAMICIA, Rafaela Greici da Motta. Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja. 2018. 80 f.. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018.http://tede.unioeste.br/handle/tede/4103The selection of variables for the management zone design (MZs) generally uses productivity data from previous years; however, questions remain about the type and amount of data needed to classify these MZs, as well as whether data normalization interferes with this selection. All of these approaches merely identify the potential of the MZs; additional research is needed to test whether the identified MZs actually function as effective management zones to increase productivity, and plant density in soybean cultivation is a relevant management practice for reaching high grain yields. In this context, the present study was carried out to verify if the selection of the variables used for the design of MZs is influenced when data from one or more years of productivity are used, and if the normalization methods can influence this selection. The three main techniques of data normalization proposed in the literature with data of up to five years of productivity were evaluated. The behavior of soybean yield under different seeding densities was evaluated in two pre-established management zones. The experiments were carried out in two commercial agricultural areas, located in the state of Paraná, Brazil, where corn and soybean was grown, with data obtained between the years of 2012 and 2018. With the experiments, it was possible to conclude that the productivity did not present spatial autocorrelation in some simulations; however, this did not influence the selection of the variables. Among the studied variables, the altitude and soil mechanical resistance to penetration (RSP) correlated with soybean and corn crop productivity in both study areas; the number of harvests negatively influenced the analysis of spatial correlation between yield and soil attributes; the amplitude normalization method showed the best results of variance (VR) and ANOVA reduction and the mean one showed the greatest reduction of the coefficient of variation (CV). ZM with higher productive potential presented better but not expressive results regarding productivity, since there was no statistical difference between the means. Seed densities produced yield differences; for soybean with line spacing of 0.70 m, the density of 15 plants m-1 provided the highest yields; and, by means of economic analysis, it is confirmed that the use of this density in the whole area is the best option to maximize final yield.A seleção de variáveis para o delineamento de zonas de manejo (ZMs) geralmente usa dados da produtividade de anos anteriores; porém, permanecem questões sobre o tipo e a quantidade de dados necessários para classificar estas ZMs, assim como se a normalização de dados interfere nesta seleção. Todas essas abordagens meramente identificam o potencial das ZMs; pesquisas adicionais são necessárias para testar se as ZMs identificadas funcionam de fato como zonas de gerenciamento efetivas para incrementar a produtividade, sendo a densidade de plantas no cultivo de soja uma prática de manejo relevante para o alcance de alta produtividade de grãos. Neste contexto, buscou-se estudar se a seleção das variáveis utilizadas para o delineamento de ZMs é influenciada quando se utilizam dados de um ou mais anos de produtividade, e se os métodos de normalização podem influenciar nesta seleção. Foram avaliadas as três principais técnicas de normalização de dados propostas na literatura com dados de até cinco anos de produtividade. Avaliou-se também o comportamento do rendimento da cultura de soja sob a aplicação de diferentes densidades de semeadura em duas zonas de manejo pré-estabelecidas. Os experimentos foram realizados em duas áreas agrícola comerciais, localizadas no estado do Paraná, nas quais se cultivaram milho e soja, com dados obtidos entre os anos de 2012 e 2018. Com os experimentos realizados foi possível concluir que a produtividade não apresentou autocorrelação espacial em algumas simulações; entretanto, isso não influenciou na seleção das variáveis. Dentre as variáveis estudadas, a altitude e a resistência mecânica do solo à penetração (RSP) tiveram correlação com a produtividade das culturas da soja e do milho em ambas as áreas estudas; o número de safras influenciou negativamente na análise de correlação espacial entre a produtividade e os atributos do solo; o método de normalização amplitude apresentou os melhores resultados de redução da variância (VR) e ANOVA e o da média apresentou a maior redução do coeficiente de variação (CV). A ZM com maior potencial produtivo apresentou resultados melhores, mas não expressivos no que diz respeito à produtividade, já que não houve diferença estatística entre as médias. As densidades de semeadura resultaram em diferenças de produções; para a soja com espaçamento entre linhas de 0,70 m, a densidade de 15 plantas m-1 proporcionou as maiores produtividades; e, por meio da análise econômica, confirma-se ser a utilização desta densidade em toda a área a melhor opção para maximizar o rendimento final.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2019-02-19T17:12:19Z No. of bitstreams: 2 Rafaela_Camicia_2018.pdf: 1387248 bytes, checksum: 68c2f157ecc1e1a0847704456e90637b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-02-19T17:12:19Z (GMT). No. of bitstreams: 2 Rafaela_Camicia_2018.pdf: 1387248 bytes, checksum: 68c2f157ecc1e1a0847704456e90637b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-12-03application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAgricultura de precisãoSeleção de atributosUnidades de manejoProdutividade.Precision agricultureSelection of attributesManagement unitsProductivityCIENCIAS AGRARIAS::ENGENHARIA AGRICOLASeleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de sojaSelection of variables for generation of management zones and different soybean densitiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-534769245041605212960060060022143744428683820159185445721588761555reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALRafaela_Camicia_2018.pdfRafaela_Camicia_2018.pdfapplication/pdf1387248http://tede.unioeste.br:8080/tede/bitstream/tede/4103/5/Rafaela_Camicia_2018.pdf68c2f157ecc1e1a0847704456e90637bMD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://tede.unioeste.br:8080/tede/bitstream/tede/4103/2/license_url321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/4103/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede.unioeste.br:8080/tede/bitstream/tede/4103/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/4103/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/41032019-02-19 14:12:20.031oai:tede.unioeste.br:tede/4103Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2019-02-19T17:12:20Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false |
dc.title.por.fl_str_mv |
Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja |
dc.title.alternative.eng.fl_str_mv |
Selection of variables for generation of management zones and different soybean densities |
title |
Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja |
spellingShingle |
Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja Camicia, Rafaela Greici da Motta Agricultura de precisão Seleção de atributos Unidades de manejo Produtividade. Precision agriculture Selection of attributes Management units Productivity CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
title_short |
Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja |
title_full |
Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja |
title_fullStr |
Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja |
title_full_unstemmed |
Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja |
title_sort |
Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja |
author |
Camicia, Rafaela Greici da Motta |
author_facet |
Camicia, Rafaela Greici da Motta |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Maggi, Marcio Furlan |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8677221771738301 |
dc.contributor.advisor-co1.fl_str_mv |
Bazzi, Claudio Leones |
dc.contributor.referee1.fl_str_mv |
Schenatto , Kelyn |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1434499828357999 |
dc.contributor.referee2.fl_str_mv |
Rocha, Davi Marcondes |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2423987011078680 |
dc.contributor.referee3.fl_str_mv |
Coelho , Silvia Renata Machado |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/3554106124561773 |
dc.contributor.referee4.fl_str_mv |
Mercante , Erivelto |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/4061800207647478 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0668333078007212 |
dc.contributor.author.fl_str_mv |
Camicia, Rafaela Greici da Motta |
contributor_str_mv |
Maggi, Marcio Furlan Bazzi, Claudio Leones Schenatto , Kelyn Rocha, Davi Marcondes Coelho , Silvia Renata Machado Mercante , Erivelto |
dc.subject.por.fl_str_mv |
Agricultura de precisão Seleção de atributos Unidades de manejo Produtividade. |
topic |
Agricultura de precisão Seleção de atributos Unidades de manejo Produtividade. Precision agriculture Selection of attributes Management units Productivity CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
dc.subject.eng.fl_str_mv |
Precision agriculture Selection of attributes Management units Productivity |
dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
description |
The selection of variables for the management zone design (MZs) generally uses productivity data from previous years; however, questions remain about the type and amount of data needed to classify these MZs, as well as whether data normalization interferes with this selection. All of these approaches merely identify the potential of the MZs; additional research is needed to test whether the identified MZs actually function as effective management zones to increase productivity, and plant density in soybean cultivation is a relevant management practice for reaching high grain yields. In this context, the present study was carried out to verify if the selection of the variables used for the design of MZs is influenced when data from one or more years of productivity are used, and if the normalization methods can influence this selection. The three main techniques of data normalization proposed in the literature with data of up to five years of productivity were evaluated. The behavior of soybean yield under different seeding densities was evaluated in two pre-established management zones. The experiments were carried out in two commercial agricultural areas, located in the state of Paraná, Brazil, where corn and soybean was grown, with data obtained between the years of 2012 and 2018. With the experiments, it was possible to conclude that the productivity did not present spatial autocorrelation in some simulations; however, this did not influence the selection of the variables. Among the studied variables, the altitude and soil mechanical resistance to penetration (RSP) correlated with soybean and corn crop productivity in both study areas; the number of harvests negatively influenced the analysis of spatial correlation between yield and soil attributes; the amplitude normalization method showed the best results of variance (VR) and ANOVA reduction and the mean one showed the greatest reduction of the coefficient of variation (CV). ZM with higher productive potential presented better but not expressive results regarding productivity, since there was no statistical difference between the means. Seed densities produced yield differences; for soybean with line spacing of 0.70 m, the density of 15 plants m-1 provided the highest yields; and, by means of economic analysis, it is confirmed that the use of this density in the whole area is the best option to maximize final yield. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-12-03 |
dc.date.accessioned.fl_str_mv |
2019-02-19T17:12:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CAMICIA, Rafaela Greici da Motta. Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja. 2018. 80 f.. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018. |
dc.identifier.uri.fl_str_mv |
http://tede.unioeste.br/handle/tede/4103 |
identifier_str_mv |
CAMICIA, Rafaela Greici da Motta. Seleção de variáveis para geração de zonas de manejo e diferentes densidades de semeadura de soja. 2018. 80 f.. Tese( Doutorado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2018. |
url |
http://tede.unioeste.br/handle/tede/4103 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
2214374442868382015 |
dc.relation.cnpq.fl_str_mv |
9185445721588761555 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UNIOESTE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Ciências Exatas e Tecnológicas |
publisher.none.fl_str_mv |
Universidade Estadual do Oeste do Paraná Cascavel |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná (UNIOESTE) instacron:UNIOESTE |
instname_str |
Universidade Estadual do Oeste do Paraná (UNIOESTE) |
instacron_str |
UNIOESTE |
institution |
UNIOESTE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
collection |
Biblioteca Digital de Teses e Dissertações do UNIOESTE |
bitstream.url.fl_str_mv |
http://tede.unioeste.br:8080/tede/bitstream/tede/4103/5/Rafaela_Camicia_2018.pdf http://tede.unioeste.br:8080/tede/bitstream/tede/4103/2/license_url http://tede.unioeste.br:8080/tede/bitstream/tede/4103/3/license_text http://tede.unioeste.br:8080/tede/bitstream/tede/4103/4/license_rdf http://tede.unioeste.br:8080/tede/bitstream/tede/4103/1/license.txt |
bitstream.checksum.fl_str_mv |
68c2f157ecc1e1a0847704456e90637b 321f3992dd3875151d8801b773ab32ed d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE) |
repository.mail.fl_str_mv |
biblioteca.repositorio@unioeste.br |
_version_ |
1811723408478568448 |