Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol

Detalhes bibliográficos
Autor(a) principal: Fraga, Gabriel Nardi
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: https://tede.unioeste.br/handle/tede/6220
Resumo: The electrospinning of polymeric solutions has become an attractive method for application in biomedical areas, such as obtaining dressings. Thus, biocompatible polymers are widely electrospun for tissue engineering, an example is a poly(vinyl alcohol) PVA. However, this polymer has a solubility in water, which is amplified when it is in the form of nanofibers. Therefore, PVA nanofibers need to undergo a crosslinking process in order to improve their stability in water, thus maintaining their morphological structure. In this study, electrospun PVA membranes containing the antibiotic chloramphenicol (CLF) for application as dressings were subjected to two types of crosslinking using citric acid (CA) or glutaraldehyde (GLA). The SEM images showed that it was possible to obtain PVA nanofibers containing the antibiotic chloramphenicol with diameters varying between 600 and 700 nm, with the smallest diameter 593 nm being observed for membranes crosslinked with CA. Crosslinking with citric acid was able to provide better stability of the fibers against aqueous media, maintaining the morphological structures with a loss of 0.7% of the mass after 24h. However, cross-linking with GLA was not able to maintain the fibrous structure, allowing the fibers to coalesce. The improvement in thermal stability promoted by crosslinking was observed in the TGA analysis, as well as in the increase in crystallinity confirmed by the DSC, XRD, and FTIR analyses. The FTIR analysis confirmed the incorporation of the drug in the fibers, while the TGA analysis showed that the CLF delays the thermal degradation of the polymer. The absence of peaks referring to CLF in the X-ray diffractograms and the DSC curves indicate that the drug is possibly in its amorphous state, which improves the drug's solubility making it more bioavailable. The CLF release mechanism shows that the kinetics follows the Weibull model for matrix release systems, presenting a burst release in the first 30 min. The membranes showed hemotoxicity below the established limit (5%), being suitable for application in medical devices, in addition, in the presence of the drug, it promotes antimicrobial activity observed by the disk diffusion assays. Thus, through the results obtained, it was found that these membranes are promising for application in dressings.
id UNIOESTE-1_e6ba608b4bbfd00e9eb59d98c76348dd
oai_identifier_str oai:tede.unioeste.br:tede/6220
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Dragunski, Douglas Cardosohttp://lattes.cnpq.br/0612112281360342Scremim, Fernando Reinoldohttp://lattes.cnpq.br/8518867144808899Radovanovic, Eduardohttp://lattes.cnpq.br/5667657258894864Dragunski, Douglas Cardosohttp://lattes.cnpq.br/0612112281360342http://lattes.cnpq.br/7011941628559028Fraga, Gabriel Nardi2022-10-03T18:27:18Z2022-09-05FRAGA, Gabriel Nardi. Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol. 2022. 83 f. Dissertação (Mestrado em Química) - Universidade Estadual do Oeste do Paraná, Toledo, 2022.https://tede.unioeste.br/handle/tede/6220The electrospinning of polymeric solutions has become an attractive method for application in biomedical areas, such as obtaining dressings. Thus, biocompatible polymers are widely electrospun for tissue engineering, an example is a poly(vinyl alcohol) PVA. However, this polymer has a solubility in water, which is amplified when it is in the form of nanofibers. Therefore, PVA nanofibers need to undergo a crosslinking process in order to improve their stability in water, thus maintaining their morphological structure. In this study, electrospun PVA membranes containing the antibiotic chloramphenicol (CLF) for application as dressings were subjected to two types of crosslinking using citric acid (CA) or glutaraldehyde (GLA). The SEM images showed that it was possible to obtain PVA nanofibers containing the antibiotic chloramphenicol with diameters varying between 600 and 700 nm, with the smallest diameter 593 nm being observed for membranes crosslinked with CA. Crosslinking with citric acid was able to provide better stability of the fibers against aqueous media, maintaining the morphological structures with a loss of 0.7% of the mass after 24h. However, cross-linking with GLA was not able to maintain the fibrous structure, allowing the fibers to coalesce. The improvement in thermal stability promoted by crosslinking was observed in the TGA analysis, as well as in the increase in crystallinity confirmed by the DSC, XRD, and FTIR analyses. The FTIR analysis confirmed the incorporation of the drug in the fibers, while the TGA analysis showed that the CLF delays the thermal degradation of the polymer. The absence of peaks referring to CLF in the X-ray diffractograms and the DSC curves indicate that the drug is possibly in its amorphous state, which improves the drug's solubility making it more bioavailable. The CLF release mechanism shows that the kinetics follows the Weibull model for matrix release systems, presenting a burst release in the first 30 min. The membranes showed hemotoxicity below the established limit (5%), being suitable for application in medical devices, in addition, in the presence of the drug, it promotes antimicrobial activity observed by the disk diffusion assays. Thus, through the results obtained, it was found that these membranes are promising for application in dressings.A eletrofiação de soluções poliméricas tem se tornado um método atrativo para aplicação nas áreas biomédicas, como a obtenção de curativos. Assim, polímeros biocompatíveis são amplamente eletrofiados para engenharia de tecidos, um exemplo é o álcool poli(vinílico) PVA. No entretanto, este polímero possui uma solubilidade em água, a qual é amplificada quando está na forma de nanofibras. Portanto, nanofibras de PVA necessitam passar por um processo de reticulação, com a finalidade de melhorar a estabilidade em água, mantendo, desta maneira, sua estrutura morfológica. Neste estudo membranas eletrofiadas de PVA contendo o antibiótico cloranfenicol (CLF) para aplicação como curativos, foram submetidas a dois tipos de reticulação utilizando ácido cítrico (CA) ou glutaraldeído (GLA). A imagens de MEV mostraram que foi possível obter nanofibras de PVA contendo o antibiótico cloranfenicol com diâmetros variando entre 600 e 700 nm, sendo o menor diâmetro 593 nm foi observado para as membranas reticuladas com CA. A reticulação com ácido cítrico foi capaz de conferir melhor estabilidade das fibras frente a meios aquoso, mantendo as estruturas morfológicas com perda de 0,7% da massa após 24h. Entretanto, a reticulação com GLA não foi capaz de manter a estrutura fibrosa permitindo a coalescência das fibras. A melhora na estabilidade térmica promovida pela reticulação foi observada nas análises de TGA, bem como no aumento da cristalinidade confirmado pelas análises de DSC, DRX e FTIR. As análises de FTIR comprovaram a incorporação do fármaco nas fibras, enquanto as análises de TGA mostraram que o CLF retarda a degradação térmica do polímero. A ausência de picos referente ao CLF nos difratogramas de raios-X e nas curvas de DSC indicam, que possivelmente o fármaco esteja em seu estado amorfo, o que melhora a solubilidade do fármaco tornando mais biodisponível. O mecanismo de liberação do CLF mostra que a cinética segue o modelo de Weibull para sistemas matriciais de liberação, apresentando uma liberação de instantânea nos primeiros 30 min. As membranas apresentaram hemotoxicidade abaixo abaixo do limite estabelecido (5%), sendo adequada para aplicação em dispositivos médicos, além disso, na presença do fármaco promovem atividade antimicrobiana observada pelos ensaios de difusão de disco. Assim, mediante aos resultados obtidos, constatou-se que estas membranas são promissoras para aplicação em curativos.Submitted by Marilene Donadel (marilene.donadel@unioeste.br) on 2022-10-03T18:27:18Z No. of bitstreams: 1 Gabriel_Fraga_2022.pdf: 3913225 bytes, checksum: 005b7b13ba3af8f194eaa111aaff3f6b (MD5)Made available in DSpace on 2022-10-03T18:27:18Z (GMT). No. of bitstreams: 1 Gabriel_Fraga_2022.pdf: 3913225 bytes, checksum: 005b7b13ba3af8f194eaa111aaff3f6b (MD5) Previous issue date: 2022-09-05Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfpor-2624803687637593200500Universidade Estadual do Oeste do ParanáToledoPrograma de Pós-Graduação em QuímicaUNIOESTEBrasilCentro de Engenharias e Ciências ExatasEletrofiaçãoÁlcool poli(vinílico)ReticulaçãoCloranfenicolElectrospinningPoly(vinyl alcohol)CrosslinkChloramphenicolCIENCIAS EXATAS E DA TERRA::QUIMICACurativos produzidos a partir de nanofibras de PVA contendo cloranfenicolDressings produced from PVA nanofibers containing chloranphenicolinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis1435648362225100898600600600600-773440212408214692215717003253031171952075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALGabriel_Fraga_2022.pdfGabriel_Fraga_2022.pdfapplication/pdf3913225http://tede.unioeste.br:8080/tede/bitstream/tede/6220/2/Gabriel_Fraga_2022.pdf005b7b13ba3af8f194eaa111aaff3f6bMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/6220/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/62202022-10-03 15:27:18.498oai:tede.unioeste.br:tede/6220Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2022-10-03T18:27:18Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol
dc.title.alternative.eng.fl_str_mv Dressings produced from PVA nanofibers containing chloranphenicol
title Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol
spellingShingle Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol
Fraga, Gabriel Nardi
Eletrofiação
Álcool poli(vinílico)
Reticulação
Cloranfenicol
Electrospinning
Poly(vinyl alcohol)
Crosslink
Chloramphenicol
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol
title_full Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol
title_fullStr Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol
title_full_unstemmed Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol
title_sort Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol
author Fraga, Gabriel Nardi
author_facet Fraga, Gabriel Nardi
author_role author
dc.contributor.advisor1.fl_str_mv Dragunski, Douglas Cardoso
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0612112281360342
dc.contributor.referee1.fl_str_mv Scremim, Fernando Reinoldo
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8518867144808899
dc.contributor.referee2.fl_str_mv Radovanovic, Eduardo
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5667657258894864
dc.contributor.referee3.fl_str_mv Dragunski, Douglas Cardoso
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/0612112281360342
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7011941628559028
dc.contributor.author.fl_str_mv Fraga, Gabriel Nardi
contributor_str_mv Dragunski, Douglas Cardoso
Scremim, Fernando Reinoldo
Radovanovic, Eduardo
Dragunski, Douglas Cardoso
dc.subject.por.fl_str_mv Eletrofiação
Álcool poli(vinílico)
Reticulação
Cloranfenicol
topic Eletrofiação
Álcool poli(vinílico)
Reticulação
Cloranfenicol
Electrospinning
Poly(vinyl alcohol)
Crosslink
Chloramphenicol
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.eng.fl_str_mv Electrospinning
Poly(vinyl alcohol)
Crosslink
Chloramphenicol
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description The electrospinning of polymeric solutions has become an attractive method for application in biomedical areas, such as obtaining dressings. Thus, biocompatible polymers are widely electrospun for tissue engineering, an example is a poly(vinyl alcohol) PVA. However, this polymer has a solubility in water, which is amplified when it is in the form of nanofibers. Therefore, PVA nanofibers need to undergo a crosslinking process in order to improve their stability in water, thus maintaining their morphological structure. In this study, electrospun PVA membranes containing the antibiotic chloramphenicol (CLF) for application as dressings were subjected to two types of crosslinking using citric acid (CA) or glutaraldehyde (GLA). The SEM images showed that it was possible to obtain PVA nanofibers containing the antibiotic chloramphenicol with diameters varying between 600 and 700 nm, with the smallest diameter 593 nm being observed for membranes crosslinked with CA. Crosslinking with citric acid was able to provide better stability of the fibers against aqueous media, maintaining the morphological structures with a loss of 0.7% of the mass after 24h. However, cross-linking with GLA was not able to maintain the fibrous structure, allowing the fibers to coalesce. The improvement in thermal stability promoted by crosslinking was observed in the TGA analysis, as well as in the increase in crystallinity confirmed by the DSC, XRD, and FTIR analyses. The FTIR analysis confirmed the incorporation of the drug in the fibers, while the TGA analysis showed that the CLF delays the thermal degradation of the polymer. The absence of peaks referring to CLF in the X-ray diffractograms and the DSC curves indicate that the drug is possibly in its amorphous state, which improves the drug's solubility making it more bioavailable. The CLF release mechanism shows that the kinetics follows the Weibull model for matrix release systems, presenting a burst release in the first 30 min. The membranes showed hemotoxicity below the established limit (5%), being suitable for application in medical devices, in addition, in the presence of the drug, it promotes antimicrobial activity observed by the disk diffusion assays. Thus, through the results obtained, it was found that these membranes are promising for application in dressings.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-10-03T18:27:18Z
dc.date.issued.fl_str_mv 2022-09-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FRAGA, Gabriel Nardi. Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol. 2022. 83 f. Dissertação (Mestrado em Química) - Universidade Estadual do Oeste do Paraná, Toledo, 2022.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/6220
identifier_str_mv FRAGA, Gabriel Nardi. Curativos produzidos a partir de nanofibras de PVA contendo cloranfenicol. 2022. 83 f. Dissertação (Mestrado em Química) - Universidade Estadual do Oeste do Paraná, Toledo, 2022.
url https://tede.unioeste.br/handle/tede/6220
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 1435648362225100898
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7734402124082146922
dc.relation.cnpq.fl_str_mv 1571700325303117195
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Toledo
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Engenharias e Ciências Exatas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Toledo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/6220/2/Gabriel_Fraga_2022.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/6220/1/license.txt
bitstream.checksum.fl_str_mv 005b7b13ba3af8f194eaa111aaff3f6b
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1811723326564859904