Mineração de dados aplicada na identificação da propensão à evasão na universidade
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIPAMPA |
Texto Completo: | http://dspace.unipampa.edu.br:8080/jspui/handle/riu/4633 |
Resumo: | A propensão à evasão na universidade é um problema de difícil identificação, visto que há diversos fatores que influenciam a sua ocorrência, e cada universidade pode ter motivos diferentes para a ocorrência de evasão. Identificar casos de evasão de forma manual é uma tarefa impraticável, visto que envolve a manipulação de grandes quantidades de dados. O objetivo deste trabalho é identificar dentre os dados disponíveis dos alunos, as características que contribuem para a evasão na Universidade Federal do Pampa, sendo que o estudo foi delimitado para o curso de Engenharia de Computação. Nesses conjuntos de dados são aplicados técnicas da Descoberta de Conhecimento em Banco de Dados, onde os dados serão tratados e posteriormente analisados. Esta atividade é realizada com o auxílio da ferramenta Weka, a fim de minerar os dados fornecidos pela própria Universidade. A partir da identificação dos fatores associados com a evasão, tem-se a intenção de permitir a identificação de uma situação em que o aluno tenha grandes riscos de abandonar os seus estudos, e com isto, permitir que sejam criados e otimizados os meios de prevenção da evasão na universidade. Através da aplicação de diferentes algoritmos de classificação e das técnicas de regras de associação e clusterização, foi possível verificar uma associação entre o fraco desempenho acadêmico com a evasão dos alunos. |
id |
UNIP_0868ce1943e29a0a82825c0c597a44af |
---|---|
oai_identifier_str |
oai:repositorio.unipampa.edu.br:riu/4633 |
network_acronym_str |
UNIP |
network_name_str |
Repositório Institucional da UNIPAMPA |
repository_id_str |
|
spelling |
Camargo, Sandro da SilvaCechinel, CristianCamargo, Sandro da SilvaCechinel, CristianFerreira, Ana Paula LüdtkeLanot , Alisson Jamie Cruz2019-11-12T14:24:41Z2019-10-252019-11-12T14:24:41Z2012-11-24LANOT, Alisson Jamie Cruz. Mineração de dados aplicada na identificação da propensão à evasão na universidade. 80 p. 2012. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal do Pampa, Campus Bagé, Bagé, 2012.http://dspace.unipampa.edu.br:8080/jspui/handle/riu/4633A propensão à evasão na universidade é um problema de difícil identificação, visto que há diversos fatores que influenciam a sua ocorrência, e cada universidade pode ter motivos diferentes para a ocorrência de evasão. Identificar casos de evasão de forma manual é uma tarefa impraticável, visto que envolve a manipulação de grandes quantidades de dados. O objetivo deste trabalho é identificar dentre os dados disponíveis dos alunos, as características que contribuem para a evasão na Universidade Federal do Pampa, sendo que o estudo foi delimitado para o curso de Engenharia de Computação. Nesses conjuntos de dados são aplicados técnicas da Descoberta de Conhecimento em Banco de Dados, onde os dados serão tratados e posteriormente analisados. Esta atividade é realizada com o auxílio da ferramenta Weka, a fim de minerar os dados fornecidos pela própria Universidade. A partir da identificação dos fatores associados com a evasão, tem-se a intenção de permitir a identificação de uma situação em que o aluno tenha grandes riscos de abandonar os seus estudos, e com isto, permitir que sejam criados e otimizados os meios de prevenção da evasão na universidade. Através da aplicação de diferentes algoritmos de classificação e das técnicas de regras de associação e clusterização, foi possível verificar uma associação entre o fraco desempenho acadêmico com a evasão dos alunos.Dropout propensity is a problem difficult to identify in Universities, since there are several factors that may influence its occurrence, and students from different universities may have different reasons for dropping out. Identifying such cases one by one is an impractical task, since it requires dealing with large amounts of data. The main objective of this work is to identify features that may contribute students to drop out from the Federal University of Pampa (UNIPAMPA), using data collected from the university academic system. The present work was limited to the scope of students from the Computer Engineering undergraduate program of UNIPAMPA. The collected datasets were treated and analyzed in order to apply Knowledge Discovery in Databases (KDD) techniques. This task was done with the help of a tool called Weka, in which data from the university is mined. The intention here is to discover features associated with dropouts in order to identify situations of students in risk and then to find ways to create and optimize the prevention of these dropouts. Through the application of different classification algorithms, association rules and clustering techniques, it was possible to verify an association between the poor academic performance and the drop-outs.porUniversidade Federal do PampaUNIPAMPABrasilCampus BagéCNPQ::ENGENHARIASPropensão à evasãoMineração de dadosClassificaçãoRegras de associaçãoClusterizaçãoDrop-out propensityData miningClassificationAssociation rulesClusteringMineração de dados aplicada na identificação da propensão à evasão na universidadeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIPAMPAinstname:Universidade Federal do Pampa (UNIPAMPA)instacron:UNIPAMPAORIGINALTCC_2012_1_Alisson_Lanot.pdfTCC_2012_1_Alisson_Lanot.pdfapplication/pdf1151300https://repositorio.unipampa.edu.br/jspui/bitstream/riu/4633/1/TCC_2012_1_Alisson_Lanot.pdf2bb9548fbb899395375286f11fc526d4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81866https://repositorio.unipampa.edu.br/jspui/bitstream/riu/4633/2/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD52TEXTTCC_2012_1_Alisson_Lanot.pdf.txtTCC_2012_1_Alisson_Lanot.pdf.txtExtracted texttext/plain148845https://repositorio.unipampa.edu.br/jspui/bitstream/riu/4633/3/TCC_2012_1_Alisson_Lanot.pdf.txtfadbfc433f9c6cc60cedf4cbffa8beacMD53riu/46332019-11-13 03:09:56.274oai:repositorio.unipampa.edu.br:riu/4633TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://dspace.unipampa.edu.br:8080/oai/requestsisbi@unipampa.edu.bropendoar:2019-11-13T06:09:56Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)false |
dc.title.pt_BR.fl_str_mv |
Mineração de dados aplicada na identificação da propensão à evasão na universidade |
title |
Mineração de dados aplicada na identificação da propensão à evasão na universidade |
spellingShingle |
Mineração de dados aplicada na identificação da propensão à evasão na universidade Lanot , Alisson Jamie Cruz CNPQ::ENGENHARIAS Propensão à evasão Mineração de dados Classificação Regras de associação Clusterização Drop-out propensity Data mining Classification Association rules Clustering |
title_short |
Mineração de dados aplicada na identificação da propensão à evasão na universidade |
title_full |
Mineração de dados aplicada na identificação da propensão à evasão na universidade |
title_fullStr |
Mineração de dados aplicada na identificação da propensão à evasão na universidade |
title_full_unstemmed |
Mineração de dados aplicada na identificação da propensão à evasão na universidade |
title_sort |
Mineração de dados aplicada na identificação da propensão à evasão na universidade |
author |
Lanot , Alisson Jamie Cruz |
author_facet |
Lanot , Alisson Jamie Cruz |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Camargo, Sandro da Silva |
dc.contributor.advisor-co1.fl_str_mv |
Cechinel, Cristian |
dc.contributor.referee1.fl_str_mv |
Camargo, Sandro da Silva |
dc.contributor.referee2.fl_str_mv |
Cechinel, Cristian |
dc.contributor.referee3.fl_str_mv |
Ferreira, Ana Paula Lüdtke |
dc.contributor.author.fl_str_mv |
Lanot , Alisson Jamie Cruz |
contributor_str_mv |
Camargo, Sandro da Silva Cechinel, Cristian Camargo, Sandro da Silva Cechinel, Cristian Ferreira, Ana Paula Lüdtke |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS |
topic |
CNPQ::ENGENHARIAS Propensão à evasão Mineração de dados Classificação Regras de associação Clusterização Drop-out propensity Data mining Classification Association rules Clustering |
dc.subject.por.fl_str_mv |
Propensão à evasão Mineração de dados Classificação Regras de associação Clusterização Drop-out propensity Data mining Classification Association rules Clustering |
description |
A propensão à evasão na universidade é um problema de difícil identificação, visto que há diversos fatores que influenciam a sua ocorrência, e cada universidade pode ter motivos diferentes para a ocorrência de evasão. Identificar casos de evasão de forma manual é uma tarefa impraticável, visto que envolve a manipulação de grandes quantidades de dados. O objetivo deste trabalho é identificar dentre os dados disponíveis dos alunos, as características que contribuem para a evasão na Universidade Federal do Pampa, sendo que o estudo foi delimitado para o curso de Engenharia de Computação. Nesses conjuntos de dados são aplicados técnicas da Descoberta de Conhecimento em Banco de Dados, onde os dados serão tratados e posteriormente analisados. Esta atividade é realizada com o auxílio da ferramenta Weka, a fim de minerar os dados fornecidos pela própria Universidade. A partir da identificação dos fatores associados com a evasão, tem-se a intenção de permitir a identificação de uma situação em que o aluno tenha grandes riscos de abandonar os seus estudos, e com isto, permitir que sejam criados e otimizados os meios de prevenção da evasão na universidade. Através da aplicação de diferentes algoritmos de classificação e das técnicas de regras de associação e clusterização, foi possível verificar uma associação entre o fraco desempenho acadêmico com a evasão dos alunos. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-11-24 |
dc.date.accessioned.fl_str_mv |
2019-11-12T14:24:41Z |
dc.date.available.fl_str_mv |
2019-10-25 2019-11-12T14:24:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LANOT, Alisson Jamie Cruz. Mineração de dados aplicada na identificação da propensão à evasão na universidade. 80 p. 2012. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal do Pampa, Campus Bagé, Bagé, 2012. |
dc.identifier.uri.fl_str_mv |
http://dspace.unipampa.edu.br:8080/jspui/handle/riu/4633 |
identifier_str_mv |
LANOT, Alisson Jamie Cruz. Mineração de dados aplicada na identificação da propensão à evasão na universidade. 80 p. 2012. Trabalho de Conclusão de Curso (Graduação em Engenharia de Computação) – Universidade Federal do Pampa, Campus Bagé, Bagé, 2012. |
url |
http://dspace.unipampa.edu.br:8080/jspui/handle/riu/4633 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Pampa |
dc.publisher.initials.fl_str_mv |
UNIPAMPA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Campus Bagé |
publisher.none.fl_str_mv |
Universidade Federal do Pampa |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIPAMPA instname:Universidade Federal do Pampa (UNIPAMPA) instacron:UNIPAMPA |
instname_str |
Universidade Federal do Pampa (UNIPAMPA) |
instacron_str |
UNIPAMPA |
institution |
UNIPAMPA |
reponame_str |
Repositório Institucional da UNIPAMPA |
collection |
Repositório Institucional da UNIPAMPA |
bitstream.url.fl_str_mv |
https://repositorio.unipampa.edu.br/jspui/bitstream/riu/4633/1/TCC_2012_1_Alisson_Lanot.pdf https://repositorio.unipampa.edu.br/jspui/bitstream/riu/4633/2/license.txt https://repositorio.unipampa.edu.br/jspui/bitstream/riu/4633/3/TCC_2012_1_Alisson_Lanot.pdf.txt |
bitstream.checksum.fl_str_mv |
2bb9548fbb899395375286f11fc526d4 43cd690d6a359e86c1fe3d5b7cba0c9b fadbfc433f9c6cc60cedf4cbffa8beac |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA) |
repository.mail.fl_str_mv |
sisbi@unipampa.edu.br |
_version_ |
1813274842664796160 |