Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas

Detalhes bibliográficos
Autor(a) principal: Carpes, Felipe da Cunha
Data de Publicação: 2017
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UNIPAMPA
Texto Completo: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2154
Resumo: Este trabalho apresenta uma alternativa aos métodos de rastreamento do ponto de máxima potência (MPPT) fotovoltaica convencionais através da utilização de redes neurais artificiais (RNA) como aproximadora de funções. O presente trabalho desenvolve uma técnica que permite melhorar o desempenho do sistema fotovoltaico tanto em relação ao erro de regime permanente quanto em resposta dinâmica da potência extraída no arranjo fotovoltaico. O método desenvolvido utiliza uma Rede Neural Artificial Perceptron Multicamadas (PMC) como aproximadora da tensão de máxima potência, através da comparação desta referência com a atual tensão de operação do sistema fotovoltaico (), é gerado um sinal de erro que permite a definição de um incremento ótimo do passo da razão cíclica. Os resultados obtidos demonstram desempenho muito superior ao método convencional Perturbação e Observação (P&O) clássico. Primeiramente será apresentado o contexto atual e as implicações do rastreamento MPPT. Logo será realizada um revisão bibliográfica do estado da arte em métodos MPPT convencionais e utilizando RNA. São apresentados também a metodologia aplicada no estudo e, finalmente, os resultados obtidos com o sistema proposto.
id UNIP_416ab325ca0ff3e81206c241fef38df7
oai_identifier_str oai:repositorio.unipampa.edu.br:riu/2154
network_acronym_str UNIP
network_name_str Repositório Institucional da UNIPAMPA
repository_id_str
spelling Pozzebon, Giovani GuarientiCarpes, Felipe da Cunha2018-01-22T19:55:33Z2018-01-22T19:55:33Z2017-11-29CARPES, Felipe da Cunha. Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas. 83p. 2017. Trabalho de Conclusão de Curso (Graduação em Engenharia Elétrica) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2017.http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2154Este trabalho apresenta uma alternativa aos métodos de rastreamento do ponto de máxima potência (MPPT) fotovoltaica convencionais através da utilização de redes neurais artificiais (RNA) como aproximadora de funções. O presente trabalho desenvolve uma técnica que permite melhorar o desempenho do sistema fotovoltaico tanto em relação ao erro de regime permanente quanto em resposta dinâmica da potência extraída no arranjo fotovoltaico. O método desenvolvido utiliza uma Rede Neural Artificial Perceptron Multicamadas (PMC) como aproximadora da tensão de máxima potência, através da comparação desta referência com a atual tensão de operação do sistema fotovoltaico (), é gerado um sinal de erro que permite a definição de um incremento ótimo do passo da razão cíclica. Os resultados obtidos demonstram desempenho muito superior ao método convencional Perturbação e Observação (P&O) clássico. Primeiramente será apresentado o contexto atual e as implicações do rastreamento MPPT. Logo será realizada um revisão bibliográfica do estado da arte em métodos MPPT convencionais e utilizando RNA. São apresentados também a metodologia aplicada no estudo e, finalmente, os resultados obtidos com o sistema proposto.This work presents an alternative to conventional maximum power dotting (MPPT) tracking methods through the use of artificial neural networks (RNA) as a function approximation. The present work develops a technique that allows to improve the performance of the photovoltaic system both in relation to the steady state error and in the dynamic response of the extracted power in the photovoltaic array. The developed method uses a multi-layered Perceptron Artificial Neural Network (MLP) as an approximation of the maximum power voltage, by comparing this reference with the current operating voltage of the photovoltaic system (), an error signal is generated allowing the definition of an optimal increment of the duty cycle step. The results obtained demonstrate a performance far superior to the conventional classical Perturb and Observe (&) method. First, the current context and implications of MPPT tracing will be presented. A state-of-the-art literature review will then be carried out in conventional MPPT methods and using RNA. Also presented are the methodology applied in the study and, finally, the results obtained with the proposed system.porUniversidade Federal do PampaUNIPAMPABrasilCampus AlegreteCNPQ::ENGENHARIASEngenharia elétricaGeração de energia fotovoltaicaRastreamento de Máxima PotênciaRedes Neurais ArtificiaisElectrical engineeringPhotovoltaic power generationMaximum Power TrackingArtificial Neural NetworksRastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIPAMPAinstname:Universidade Federal do Pampa (UNIPAMPA)instacron:UNIPAMPAORIGINALFelipe_Carpes_TCC_Final.pdfFelipe_Carpes_TCC_Final.pdfapplication/pdf19864123https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2154/1/Felipe_Carpes_TCC_Final.pdf50ceb3768074ac041afa9a845d92aae0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81866https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2154/2/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD52TEXTFelipe_Carpes_TCC_Final.pdf.txtFelipe_Carpes_TCC_Final.pdf.txtExtracted texttext/plain121587https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2154/3/Felipe_Carpes_TCC_Final.pdf.txt3a32919bf34f49be6bd2166ed39d82e6MD53riu/21542018-06-21 13:35:42.469oai:repositorio.unipampa.edu.br:riu/2154TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://dspace.unipampa.edu.br:8080/oai/requestsisbi@unipampa.edu.bropendoar:2018-06-21T16:35:42Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)false
dc.title.pt_BR.fl_str_mv Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas
title Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas
spellingShingle Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas
Carpes, Felipe da Cunha
CNPQ::ENGENHARIAS
Engenharia elétrica
Geração de energia fotovoltaica
Rastreamento de Máxima Potência
Redes Neurais Artificiais
Electrical engineering
Photovoltaic power generation
Maximum Power Tracking
Artificial Neural Networks
title_short Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas
title_full Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas
title_fullStr Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas
title_full_unstemmed Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas
title_sort Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas
author Carpes, Felipe da Cunha
author_facet Carpes, Felipe da Cunha
author_role author
dc.contributor.advisor1.fl_str_mv Pozzebon, Giovani Guarienti
dc.contributor.author.fl_str_mv Carpes, Felipe da Cunha
contributor_str_mv Pozzebon, Giovani Guarienti
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
topic CNPQ::ENGENHARIAS
Engenharia elétrica
Geração de energia fotovoltaica
Rastreamento de Máxima Potência
Redes Neurais Artificiais
Electrical engineering
Photovoltaic power generation
Maximum Power Tracking
Artificial Neural Networks
dc.subject.por.fl_str_mv Engenharia elétrica
Geração de energia fotovoltaica
Rastreamento de Máxima Potência
Redes Neurais Artificiais
Electrical engineering
Photovoltaic power generation
Maximum Power Tracking
Artificial Neural Networks
description Este trabalho apresenta uma alternativa aos métodos de rastreamento do ponto de máxima potência (MPPT) fotovoltaica convencionais através da utilização de redes neurais artificiais (RNA) como aproximadora de funções. O presente trabalho desenvolve uma técnica que permite melhorar o desempenho do sistema fotovoltaico tanto em relação ao erro de regime permanente quanto em resposta dinâmica da potência extraída no arranjo fotovoltaico. O método desenvolvido utiliza uma Rede Neural Artificial Perceptron Multicamadas (PMC) como aproximadora da tensão de máxima potência, através da comparação desta referência com a atual tensão de operação do sistema fotovoltaico (), é gerado um sinal de erro que permite a definição de um incremento ótimo do passo da razão cíclica. Os resultados obtidos demonstram desempenho muito superior ao método convencional Perturbação e Observação (P&O) clássico. Primeiramente será apresentado o contexto atual e as implicações do rastreamento MPPT. Logo será realizada um revisão bibliográfica do estado da arte em métodos MPPT convencionais e utilizando RNA. São apresentados também a metodologia aplicada no estudo e, finalmente, os resultados obtidos com o sistema proposto.
publishDate 2017
dc.date.issued.fl_str_mv 2017-11-29
dc.date.accessioned.fl_str_mv 2018-01-22T19:55:33Z
dc.date.available.fl_str_mv 2018-01-22T19:55:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARPES, Felipe da Cunha. Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas. 83p. 2017. Trabalho de Conclusão de Curso (Graduação em Engenharia Elétrica) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2017.
dc.identifier.uri.fl_str_mv http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2154
identifier_str_mv CARPES, Felipe da Cunha. Rastreamento de máxima potência fotovoltaica através de redes neurais artificiais perceptron multicamadas. 83p. 2017. Trabalho de Conclusão de Curso (Graduação em Engenharia Elétrica) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2017.
url http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2154
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Pampa
dc.publisher.initials.fl_str_mv UNIPAMPA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Campus Alegrete
publisher.none.fl_str_mv Universidade Federal do Pampa
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIPAMPA
instname:Universidade Federal do Pampa (UNIPAMPA)
instacron:UNIPAMPA
instname_str Universidade Federal do Pampa (UNIPAMPA)
instacron_str UNIPAMPA
institution UNIPAMPA
reponame_str Repositório Institucional da UNIPAMPA
collection Repositório Institucional da UNIPAMPA
bitstream.url.fl_str_mv https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2154/1/Felipe_Carpes_TCC_Final.pdf
https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2154/2/license.txt
https://repositorio.unipampa.edu.br/jspui/bitstream/riu/2154/3/Felipe_Carpes_TCC_Final.pdf.txt
bitstream.checksum.fl_str_mv 50ceb3768074ac041afa9a845d92aae0
43cd690d6a359e86c1fe3d5b7cba0c9b
3a32919bf34f49be6bd2166ed39d82e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)
repository.mail.fl_str_mv sisbi@unipampa.edu.br
_version_ 1813274832836493312