Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte

Detalhes bibliográficos
Autor(a) principal: Bastos, Charles Rodrigues
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNIPAMPA
Texto Completo: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5285
Resumo: Valores extremos podem distorcer o resultado de uma avaliação genética. Da mesma forma, a exclusão destes valores pode ocultar alterações relevantes em um rebanho. A predição dos valores genéticos, em uma população de indivíduos, deverá ter um nível mais elevado de precisão quando a informação fenotípica e de pedigree disponíveis corresponderem a dados fidedignos. Entretanto, fatores como o efeito potencial de lesões desconhecidas, doenças, tratamento diferenciado ou até mesmo erros de entrada de dados são variáveis que não são consideradas nos modelos estatísticos, mas são capazes de comprometer a qualidade dos dados a ponto de influenciar significativamente o desempenho de um indivíduo, ou grupo de indivíduos, gerando valores extremos que poderão enviesar as estimativas dos parâmetros genéticos. Os modelos estatísticos mistos são os mais utilizados para a predição de valores genéticos porém, são sensíveis a dados com valores extremos e necessitam editar ou descartar estes dados, para mitigar a distorção dos resultados. Diante disso, o objetivo deste trabalho é demonstrar que a implementação de um modelo robusto pode reduzir a influência destes dados com valores extremos e melhorar o resultado da predição sem descartar dados. Para tanto, foi desenvolvido um algoritmo que calcula as equações de modelos mistos, identifica a relação entre os valores extremos e o resultado da predição, introduzindo, quando necessário, uma variável de ponderação capaz de reduzir o desvio de cada observação em relação à média de sua unidade amostral. Os resultados obtidos demonstraram que foi possível melhorar a precisão das estimações, reduzindo, em alguns casos, a influência de valores extremos em até 90 por cento, de acordo com o desvio padrão calculado, sem descartá-los do modelo. Desta forma, diante de conjuntos de dados com valores extremos, o modelo robusto de predição apresentou resultados mais precisos, em comparação ao modelo misto. Nas duas características avaliadas, houveram reduções entre 55 e 79 por cento no intervalo entre o maior e o menor valor estimado.
id UNIP_ced0851f73c798cbc8d38f6b57508e07
oai_identifier_str oai:repositorio.unipampa.edu.br:riu/5285
network_acronym_str UNIP
network_name_str Repositório Institucional da UNIPAMPA
repository_id_str
spelling Cardoso, Fernando Floreshttp://lattes.cnpq.br/5739317705056424Camargo, Sandro da Silvahttp://lattes.cnpq.br/8826344853104147Boligon, Arione AugustiYokoo, Marcos Jun-ItiDuarte Filho, Paulo Fernando Marqueshttp://lattes.cnpq.br/2725334713449327http://lattes.cnpq.br/1062272841280355http://lattes.cnpq.br/5203662694720338http://lattes.cnpq.br/9808439010836984Bastos, Charles Rodrigues2020-12-10T18:33:38Z2020-12-10T18:33:38Z2019-09-03BASTOS, Charles Rodrigues. Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte. 80 f. 2019. Dissertação (Mestrado) – Programa de Pós-Graduação Mestrado Acadêmico em Computação Aplicada – Universidade Federal do Pampa, Campus Bagé, Bagé, 2019.http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5285Valores extremos podem distorcer o resultado de uma avaliação genética. Da mesma forma, a exclusão destes valores pode ocultar alterações relevantes em um rebanho. A predição dos valores genéticos, em uma população de indivíduos, deverá ter um nível mais elevado de precisão quando a informação fenotípica e de pedigree disponíveis corresponderem a dados fidedignos. Entretanto, fatores como o efeito potencial de lesões desconhecidas, doenças, tratamento diferenciado ou até mesmo erros de entrada de dados são variáveis que não são consideradas nos modelos estatísticos, mas são capazes de comprometer a qualidade dos dados a ponto de influenciar significativamente o desempenho de um indivíduo, ou grupo de indivíduos, gerando valores extremos que poderão enviesar as estimativas dos parâmetros genéticos. Os modelos estatísticos mistos são os mais utilizados para a predição de valores genéticos porém, são sensíveis a dados com valores extremos e necessitam editar ou descartar estes dados, para mitigar a distorção dos resultados. Diante disso, o objetivo deste trabalho é demonstrar que a implementação de um modelo robusto pode reduzir a influência destes dados com valores extremos e melhorar o resultado da predição sem descartar dados. Para tanto, foi desenvolvido um algoritmo que calcula as equações de modelos mistos, identifica a relação entre os valores extremos e o resultado da predição, introduzindo, quando necessário, uma variável de ponderação capaz de reduzir o desvio de cada observação em relação à média de sua unidade amostral. Os resultados obtidos demonstraram que foi possível melhorar a precisão das estimações, reduzindo, em alguns casos, a influência de valores extremos em até 90 por cento, de acordo com o desvio padrão calculado, sem descartá-los do modelo. Desta forma, diante de conjuntos de dados com valores extremos, o modelo robusto de predição apresentou resultados mais precisos, em comparação ao modelo misto. Nas duas características avaliadas, houveram reduções entre 55 e 79 por cento no intervalo entre o maior e o menor valor estimado.Extreme values can distort the result of a genetic assessment. Similarly, deleting these values can hide relevant changes in a herd. Prediction of genetic values in a population of individuals should have a higher level of accuracy when the available phenotypic and pedigree information matches reliable data. However, factors such as the potential effect of unknown injuries, disease, differential treatment or even data entry errors are variables that are not considered in statistical models, but are capable of compromising data quality to the extent that they significantly influence performance of an individual or group of individuals, generating extreme values that may skew estimates of genetic parameters. Mixed statistical models are the most used for predicting genetic values, but are sensitive to data with extreme values and need to edit or discard these data to mitigate the distortion of results. Therefore, the objective of this work is to demonstrate that the implementation of a robust model can reduce the influence of this data with extreme values and improve the prediction result without discarding data. For this, an algorithm was developed that calculates the mixed model equations, identifies the relationship between the extreme values and the accuracy of the prediction and introduces, when necessary, a weighting variable capable of reducing the deviation of each observation from the mean. your sample unit. The results showed that it was possible to improve the accuracy of the estimates, reducing, in some cases, the influence of extreme values by up to 90 percent, according to the calculated standard deviation, without discarding them from the model. Thus, in the face of data sets with extreme values, the robust prediction model presented more accurate results compared to the mixed model. In both characteristics evaluated, there were reductions between 55 and 79 percent in the interval between the highest and the lowest estimated value.porUniversidade Federal do PampaMestrado Acadêmico em Computação AplicadaUNIPAMPABrasilCampus BagéCNPQ::CIENCIAS EXATAS E DA TERRAPredição genéticaValores extremosMelhoramento genético animalAcuráciaModelo RobustoGenetic predictionExtreme valuesAnimal genetic improvementAccuracyRobust modelAplicação de modelos robustos para a predição de valores genéticos em bovinos de cortePrediction of genetic values in beef cattle using robust modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIPAMPAinstname:Universidade Federal do Pampa (UNIPAMPA)instacron:UNIPAMPALICENSElicense.txtlicense.txttext/plain; charset=utf-81866https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5285/2/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD52TEXTDIS Charles Bastos 2019.pdf.txtDIS Charles Bastos 2019.pdf.txtExtracted texttext/plain150412https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5285/3/DIS%20Charles%20Bastos%202019.pdf.txt5c4b5ef98b6f9189fec359d7af407e66MD53ORIGINALDIS Charles Bastos 2019.pdfDIS Charles Bastos 2019.pdfapplication/pdf2229294https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5285/1/DIS%20Charles%20Bastos%202019.pdf3a00946cc798dfd05b13ba852366ac5eMD51riu/52852020-12-11 03:02:48.189oai:repositorio.unipampa.edu.br:riu/5285TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://dspace.unipampa.edu.br:8080/oai/requestsisbi@unipampa.edu.bropendoar:2020-12-11T06:02:48Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)false
dc.title.pt_BR.fl_str_mv Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte
dc.title.alternative.pt_BR.fl_str_mv Prediction of genetic values in beef cattle using robust models
title Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte
spellingShingle Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte
Bastos, Charles Rodrigues
CNPQ::CIENCIAS EXATAS E DA TERRA
Predição genética
Valores extremos
Melhoramento genético animal
Acurácia
Modelo Robusto
Genetic prediction
Extreme values
Animal genetic improvement
Accuracy
Robust model
title_short Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte
title_full Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte
title_fullStr Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte
title_full_unstemmed Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte
title_sort Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte
author Bastos, Charles Rodrigues
author_facet Bastos, Charles Rodrigues
author_role author
dc.contributor.advisor1.fl_str_mv Cardoso, Fernando Flores
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5739317705056424
dc.contributor.advisor-co1.fl_str_mv Camargo, Sandro da Silva
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8826344853104147
dc.contributor.referee1.fl_str_mv Boligon, Arione Augusti
dc.contributor.referee2.fl_str_mv Yokoo, Marcos Jun-Iti
dc.contributor.referee3.fl_str_mv Duarte Filho, Paulo Fernando Marques
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/2725334713449327
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1062272841280355
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5203662694720338
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9808439010836984
dc.contributor.author.fl_str_mv Bastos, Charles Rodrigues
contributor_str_mv Cardoso, Fernando Flores
Camargo, Sandro da Silva
Boligon, Arione Augusti
Yokoo, Marcos Jun-Iti
Duarte Filho, Paulo Fernando Marques
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA
topic CNPQ::CIENCIAS EXATAS E DA TERRA
Predição genética
Valores extremos
Melhoramento genético animal
Acurácia
Modelo Robusto
Genetic prediction
Extreme values
Animal genetic improvement
Accuracy
Robust model
dc.subject.por.fl_str_mv Predição genética
Valores extremos
Melhoramento genético animal
Acurácia
Modelo Robusto
Genetic prediction
Extreme values
Animal genetic improvement
Accuracy
Robust model
description Valores extremos podem distorcer o resultado de uma avaliação genética. Da mesma forma, a exclusão destes valores pode ocultar alterações relevantes em um rebanho. A predição dos valores genéticos, em uma população de indivíduos, deverá ter um nível mais elevado de precisão quando a informação fenotípica e de pedigree disponíveis corresponderem a dados fidedignos. Entretanto, fatores como o efeito potencial de lesões desconhecidas, doenças, tratamento diferenciado ou até mesmo erros de entrada de dados são variáveis que não são consideradas nos modelos estatísticos, mas são capazes de comprometer a qualidade dos dados a ponto de influenciar significativamente o desempenho de um indivíduo, ou grupo de indivíduos, gerando valores extremos que poderão enviesar as estimativas dos parâmetros genéticos. Os modelos estatísticos mistos são os mais utilizados para a predição de valores genéticos porém, são sensíveis a dados com valores extremos e necessitam editar ou descartar estes dados, para mitigar a distorção dos resultados. Diante disso, o objetivo deste trabalho é demonstrar que a implementação de um modelo robusto pode reduzir a influência destes dados com valores extremos e melhorar o resultado da predição sem descartar dados. Para tanto, foi desenvolvido um algoritmo que calcula as equações de modelos mistos, identifica a relação entre os valores extremos e o resultado da predição, introduzindo, quando necessário, uma variável de ponderação capaz de reduzir o desvio de cada observação em relação à média de sua unidade amostral. Os resultados obtidos demonstraram que foi possível melhorar a precisão das estimações, reduzindo, em alguns casos, a influência de valores extremos em até 90 por cento, de acordo com o desvio padrão calculado, sem descartá-los do modelo. Desta forma, diante de conjuntos de dados com valores extremos, o modelo robusto de predição apresentou resultados mais precisos, em comparação ao modelo misto. Nas duas características avaliadas, houveram reduções entre 55 e 79 por cento no intervalo entre o maior e o menor valor estimado.
publishDate 2019
dc.date.issued.fl_str_mv 2019-09-03
dc.date.accessioned.fl_str_mv 2020-12-10T18:33:38Z
dc.date.available.fl_str_mv 2020-12-10T18:33:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BASTOS, Charles Rodrigues. Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte. 80 f. 2019. Dissertação (Mestrado) – Programa de Pós-Graduação Mestrado Acadêmico em Computação Aplicada – Universidade Federal do Pampa, Campus Bagé, Bagé, 2019.
dc.identifier.uri.fl_str_mv http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5285
identifier_str_mv BASTOS, Charles Rodrigues. Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte. 80 f. 2019. Dissertação (Mestrado) – Programa de Pós-Graduação Mestrado Acadêmico em Computação Aplicada – Universidade Federal do Pampa, Campus Bagé, Bagé, 2019.
url http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5285
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Pampa
dc.publisher.program.fl_str_mv Mestrado Acadêmico em Computação Aplicada
dc.publisher.initials.fl_str_mv UNIPAMPA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Campus Bagé
publisher.none.fl_str_mv Universidade Federal do Pampa
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIPAMPA
instname:Universidade Federal do Pampa (UNIPAMPA)
instacron:UNIPAMPA
instname_str Universidade Federal do Pampa (UNIPAMPA)
instacron_str UNIPAMPA
institution UNIPAMPA
reponame_str Repositório Institucional da UNIPAMPA
collection Repositório Institucional da UNIPAMPA
bitstream.url.fl_str_mv https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5285/2/license.txt
https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5285/3/DIS%20Charles%20Bastos%202019.pdf.txt
https://repositorio.unipampa.edu.br/jspui/bitstream/riu/5285/1/DIS%20Charles%20Bastos%202019.pdf
bitstream.checksum.fl_str_mv 43cd690d6a359e86c1fe3d5b7cba0c9b
5c4b5ef98b6f9189fec359d7af407e66
3a00946cc798dfd05b13ba852366ac5e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)
repository.mail.fl_str_mv sisbi@unipampa.edu.br
_version_ 1813274823909965824