Default estimation in agricultural credit using a regression model: the case of a credit cooperative

Detalhes bibliográficos
Autor(a) principal: Gonçalves Jr., Carlos Alberto
Data de Publicação: 2009
Outros Autores: Uribe Opazo, Miguel Angel, Freire da Rocha Jr., Weimar, Toesca Gimenes, Régio Marcio
Tipo de documento: Artigo
Idioma: por
Título da fonte: Redes (Santa Cruz do Sul. Online)
Texto Completo: https://online.unisc.br/seer/index.php/redes/article/view/934
Resumo: This paper aims at developing a model that may help a credit cooperative in the region of Toledo, Paraná, in the analysis and concession of agricultural credit, estimating the probability of execution of the contracts, what permits to predict a possible default, using the logistic regression model – Logit. The theoretical framework used, based on the Theory of Transaction Costs, identifies the default as the result of the incompleteness of contracts and the asymmetry of information between borrowers and the credit cooperative, in order to avoid the granting of credit to possible defaulters. To do so, we collected information on the borrowers from the records of the cooperative from 2004 to 2007, aiming at drawing a profile of the credit borrower. Later, we estimated the logistic regression model for 10 different samples to identify the one that received the greatest number of hits between payers and defaulters. We established that the estimated model was more efficient to identify the payers’ contracts than the defaulters’ contracts. Even with a rather low percentual average of accuracy the model may help the cooperative’s decision making in granting credit.
id UNISC-6_bf2ade6c294f2219bd74cc6bc202f078
oai_identifier_str oai:ojs.online.unisc.br:article/934
network_acronym_str UNISC-6
network_name_str Redes (Santa Cruz do Sul. Online)
repository_id_str
spelling Default estimation in agricultural credit using a regression model: the case of a credit cooperativeEstimativa de inadimplência na concessão de crédito agrícola pela utilização do modelo de regressão logística: o caso de uma cooperativa de créditoAssimetria de InformaçõesModelagem EstatísticaInadimplênciaCooperativismo de CréditoThis paper aims at developing a model that may help a credit cooperative in the region of Toledo, Paraná, in the analysis and concession of agricultural credit, estimating the probability of execution of the contracts, what permits to predict a possible default, using the logistic regression model – Logit. The theoretical framework used, based on the Theory of Transaction Costs, identifies the default as the result of the incompleteness of contracts and the asymmetry of information between borrowers and the credit cooperative, in order to avoid the granting of credit to possible defaulters. To do so, we collected information on the borrowers from the records of the cooperative from 2004 to 2007, aiming at drawing a profile of the credit borrower. Later, we estimated the logistic regression model for 10 different samples to identify the one that received the greatest number of hits between payers and defaulters. We established that the estimated model was more efficient to identify the payers’ contracts than the defaulters’ contracts. Even with a rather low percentual average of accuracy the model may help the cooperative’s decision making in granting credit.Este trabalho objetiva desenvolver um modelo que possa auxiliar uma cooperativa de crédito da região de Toledo na análise e concessão de crédito agrícola calculando a probabilidade de cumprimento dos contratos, o que permite antever os possíveis contratos inadimplentes, utilizando-se o Modelo de Regressão Logística – Logit. O referencial teórico utilizado, baseado na Teoria dos Custos de Transação, identifica a inadimplência como sendo resultado da incompletude dos contratos e da assimetria de informações entre as partes envolvidas em uma transação. Espera-se que esse modelo possa reduzir a assimetria de informações entre os tomadores e a cooperativa de crédito, no intuito de evitar a concessão de crédito a possíveis inadimplentes. Para isso, coletou-se junto à cooperativa, objeto do estudo, informações cadastrais dos tomadores de crédito, no período de 2004 a 2007, objetivando traçar-lhes um perfil. Posteriormente estimou-se o Modelo de Regressão Logística para 10 amostras aleatórias diferentes, a fim de identificar a amostra que obtivesse o maior número de acertos entre adimplentes e inadimplentes. Constatou-se que o modelo estimado foi mais eficiente para identificar os contratos adimplentes que os inadimplentes, e que mesmo com um percentual médio de acerto não muito elevado o modelo pode auxiliar a tomada de decisão da cooperativa na concessão de crédito.Edunisc - Universidade de Santa Cruz do Sul2009-11-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://online.unisc.br/seer/index.php/redes/article/view/93410.17058/redes.v14i2.934Redes ; Vol. 14 No. 2 (2009); 80-102Redes; Vol. 14 Núm. 2 (2009); 80-102Redes; Vol. 14 No. 2 (2009); 80-102Redes; v. 14 n. 2 (2009); 80-1021982-6745reponame:Redes (Santa Cruz do Sul. Online)instname:Universidade de Santa Cruz do Sul (UNISC)instacron:UNISCporhttps://online.unisc.br/seer/index.php/redes/article/view/934/1441Gonçalves Jr., Carlos AlbertoUribe Opazo, Miguel AngelFreire da Rocha Jr., WeimarToesca Gimenes, Régio Marcioinfo:eu-repo/semantics/openAccess2019-10-03T17:51:02Zoai:ojs.online.unisc.br:article/934Revistahttp://online.unisc.br/seer/index.php/redeshttp://online.unisc.br/seer/index.php/redes/oairedes_unisc_maff@terra.com.br||etges@unisc.br1982-67451414-7106opendoar:2019-10-03T17:51:02Redes (Santa Cruz do Sul. Online) - Universidade de Santa Cruz do Sul (UNISC)false
dc.title.none.fl_str_mv Default estimation in agricultural credit using a regression model: the case of a credit cooperative
Estimativa de inadimplência na concessão de crédito agrícola pela utilização do modelo de regressão logística: o caso de uma cooperativa de crédito
title Default estimation in agricultural credit using a regression model: the case of a credit cooperative
spellingShingle Default estimation in agricultural credit using a regression model: the case of a credit cooperative
Gonçalves Jr., Carlos Alberto
Assimetria de Informações
Modelagem Estatística
Inadimplência
Cooperativismo de Crédito
title_short Default estimation in agricultural credit using a regression model: the case of a credit cooperative
title_full Default estimation in agricultural credit using a regression model: the case of a credit cooperative
title_fullStr Default estimation in agricultural credit using a regression model: the case of a credit cooperative
title_full_unstemmed Default estimation in agricultural credit using a regression model: the case of a credit cooperative
title_sort Default estimation in agricultural credit using a regression model: the case of a credit cooperative
author Gonçalves Jr., Carlos Alberto
author_facet Gonçalves Jr., Carlos Alberto
Uribe Opazo, Miguel Angel
Freire da Rocha Jr., Weimar
Toesca Gimenes, Régio Marcio
author_role author
author2 Uribe Opazo, Miguel Angel
Freire da Rocha Jr., Weimar
Toesca Gimenes, Régio Marcio
author2_role author
author
author
dc.contributor.author.fl_str_mv Gonçalves Jr., Carlos Alberto
Uribe Opazo, Miguel Angel
Freire da Rocha Jr., Weimar
Toesca Gimenes, Régio Marcio
dc.subject.por.fl_str_mv Assimetria de Informações
Modelagem Estatística
Inadimplência
Cooperativismo de Crédito
topic Assimetria de Informações
Modelagem Estatística
Inadimplência
Cooperativismo de Crédito
description This paper aims at developing a model that may help a credit cooperative in the region of Toledo, Paraná, in the analysis and concession of agricultural credit, estimating the probability of execution of the contracts, what permits to predict a possible default, using the logistic regression model – Logit. The theoretical framework used, based on the Theory of Transaction Costs, identifies the default as the result of the incompleteness of contracts and the asymmetry of information between borrowers and the credit cooperative, in order to avoid the granting of credit to possible defaulters. To do so, we collected information on the borrowers from the records of the cooperative from 2004 to 2007, aiming at drawing a profile of the credit borrower. Later, we estimated the logistic regression model for 10 different samples to identify the one that received the greatest number of hits between payers and defaulters. We established that the estimated model was more efficient to identify the payers’ contracts than the defaulters’ contracts. Even with a rather low percentual average of accuracy the model may help the cooperative’s decision making in granting credit.
publishDate 2009
dc.date.none.fl_str_mv 2009-11-17
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://online.unisc.br/seer/index.php/redes/article/view/934
10.17058/redes.v14i2.934
url https://online.unisc.br/seer/index.php/redes/article/view/934
identifier_str_mv 10.17058/redes.v14i2.934
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://online.unisc.br/seer/index.php/redes/article/view/934/1441
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Edunisc - Universidade de Santa Cruz do Sul
publisher.none.fl_str_mv Edunisc - Universidade de Santa Cruz do Sul
dc.source.none.fl_str_mv Redes ; Vol. 14 No. 2 (2009); 80-102
Redes; Vol. 14 Núm. 2 (2009); 80-102
Redes; Vol. 14 No. 2 (2009); 80-102
Redes; v. 14 n. 2 (2009); 80-102
1982-6745
reponame:Redes (Santa Cruz do Sul. Online)
instname:Universidade de Santa Cruz do Sul (UNISC)
instacron:UNISC
instname_str Universidade de Santa Cruz do Sul (UNISC)
instacron_str UNISC
institution UNISC
reponame_str Redes (Santa Cruz do Sul. Online)
collection Redes (Santa Cruz do Sul. Online)
repository.name.fl_str_mv Redes (Santa Cruz do Sul. Online) - Universidade de Santa Cruz do Sul (UNISC)
repository.mail.fl_str_mv redes_unisc_maff@terra.com.br||etges@unisc.br
_version_ 1800218767978921984