Default estimation in agricultural credit using a regression model: the case of a credit cooperative
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Redes (Santa Cruz do Sul. Online) |
Texto Completo: | https://online.unisc.br/seer/index.php/redes/article/view/934 |
Resumo: | This paper aims at developing a model that may help a credit cooperative in the region of Toledo, Paraná, in the analysis and concession of agricultural credit, estimating the probability of execution of the contracts, what permits to predict a possible default, using the logistic regression model – Logit. The theoretical framework used, based on the Theory of Transaction Costs, identifies the default as the result of the incompleteness of contracts and the asymmetry of information between borrowers and the credit cooperative, in order to avoid the granting of credit to possible defaulters. To do so, we collected information on the borrowers from the records of the cooperative from 2004 to 2007, aiming at drawing a profile of the credit borrower. Later, we estimated the logistic regression model for 10 different samples to identify the one that received the greatest number of hits between payers and defaulters. We established that the estimated model was more efficient to identify the payers’ contracts than the defaulters’ contracts. Even with a rather low percentual average of accuracy the model may help the cooperative’s decision making in granting credit. |
id |
UNISC-6_bf2ade6c294f2219bd74cc6bc202f078 |
---|---|
oai_identifier_str |
oai:ojs.online.unisc.br:article/934 |
network_acronym_str |
UNISC-6 |
network_name_str |
Redes (Santa Cruz do Sul. Online) |
repository_id_str |
|
spelling |
Default estimation in agricultural credit using a regression model: the case of a credit cooperativeEstimativa de inadimplência na concessão de crédito agrícola pela utilização do modelo de regressão logística: o caso de uma cooperativa de créditoAssimetria de InformaçõesModelagem EstatísticaInadimplênciaCooperativismo de CréditoThis paper aims at developing a model that may help a credit cooperative in the region of Toledo, Paraná, in the analysis and concession of agricultural credit, estimating the probability of execution of the contracts, what permits to predict a possible default, using the logistic regression model – Logit. The theoretical framework used, based on the Theory of Transaction Costs, identifies the default as the result of the incompleteness of contracts and the asymmetry of information between borrowers and the credit cooperative, in order to avoid the granting of credit to possible defaulters. To do so, we collected information on the borrowers from the records of the cooperative from 2004 to 2007, aiming at drawing a profile of the credit borrower. Later, we estimated the logistic regression model for 10 different samples to identify the one that received the greatest number of hits between payers and defaulters. We established that the estimated model was more efficient to identify the payers’ contracts than the defaulters’ contracts. Even with a rather low percentual average of accuracy the model may help the cooperative’s decision making in granting credit.Este trabalho objetiva desenvolver um modelo que possa auxiliar uma cooperativa de crédito da região de Toledo na análise e concessão de crédito agrícola calculando a probabilidade de cumprimento dos contratos, o que permite antever os possíveis contratos inadimplentes, utilizando-se o Modelo de Regressão Logística – Logit. O referencial teórico utilizado, baseado na Teoria dos Custos de Transação, identifica a inadimplência como sendo resultado da incompletude dos contratos e da assimetria de informações entre as partes envolvidas em uma transação. Espera-se que esse modelo possa reduzir a assimetria de informações entre os tomadores e a cooperativa de crédito, no intuito de evitar a concessão de crédito a possíveis inadimplentes. Para isso, coletou-se junto à cooperativa, objeto do estudo, informações cadastrais dos tomadores de crédito, no período de 2004 a 2007, objetivando traçar-lhes um perfil. Posteriormente estimou-se o Modelo de Regressão Logística para 10 amostras aleatórias diferentes, a fim de identificar a amostra que obtivesse o maior número de acertos entre adimplentes e inadimplentes. Constatou-se que o modelo estimado foi mais eficiente para identificar os contratos adimplentes que os inadimplentes, e que mesmo com um percentual médio de acerto não muito elevado o modelo pode auxiliar a tomada de decisão da cooperativa na concessão de crédito.Edunisc - Universidade de Santa Cruz do Sul2009-11-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://online.unisc.br/seer/index.php/redes/article/view/93410.17058/redes.v14i2.934Redes ; Vol. 14 No. 2 (2009); 80-102Redes; Vol. 14 Núm. 2 (2009); 80-102Redes; Vol. 14 No. 2 (2009); 80-102Redes; v. 14 n. 2 (2009); 80-1021982-6745reponame:Redes (Santa Cruz do Sul. Online)instname:Universidade de Santa Cruz do Sul (UNISC)instacron:UNISCporhttps://online.unisc.br/seer/index.php/redes/article/view/934/1441Gonçalves Jr., Carlos AlbertoUribe Opazo, Miguel AngelFreire da Rocha Jr., WeimarToesca Gimenes, Régio Marcioinfo:eu-repo/semantics/openAccess2019-10-03T17:51:02Zoai:ojs.online.unisc.br:article/934Revistahttp://online.unisc.br/seer/index.php/redeshttp://online.unisc.br/seer/index.php/redes/oairedes_unisc_maff@terra.com.br||etges@unisc.br1982-67451414-7106opendoar:2019-10-03T17:51:02Redes (Santa Cruz do Sul. Online) - Universidade de Santa Cruz do Sul (UNISC)false |
dc.title.none.fl_str_mv |
Default estimation in agricultural credit using a regression model: the case of a credit cooperative Estimativa de inadimplência na concessão de crédito agrícola pela utilização do modelo de regressão logística: o caso de uma cooperativa de crédito |
title |
Default estimation in agricultural credit using a regression model: the case of a credit cooperative |
spellingShingle |
Default estimation in agricultural credit using a regression model: the case of a credit cooperative Gonçalves Jr., Carlos Alberto Assimetria de Informações Modelagem Estatística Inadimplência Cooperativismo de Crédito |
title_short |
Default estimation in agricultural credit using a regression model: the case of a credit cooperative |
title_full |
Default estimation in agricultural credit using a regression model: the case of a credit cooperative |
title_fullStr |
Default estimation in agricultural credit using a regression model: the case of a credit cooperative |
title_full_unstemmed |
Default estimation in agricultural credit using a regression model: the case of a credit cooperative |
title_sort |
Default estimation in agricultural credit using a regression model: the case of a credit cooperative |
author |
Gonçalves Jr., Carlos Alberto |
author_facet |
Gonçalves Jr., Carlos Alberto Uribe Opazo, Miguel Angel Freire da Rocha Jr., Weimar Toesca Gimenes, Régio Marcio |
author_role |
author |
author2 |
Uribe Opazo, Miguel Angel Freire da Rocha Jr., Weimar Toesca Gimenes, Régio Marcio |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Gonçalves Jr., Carlos Alberto Uribe Opazo, Miguel Angel Freire da Rocha Jr., Weimar Toesca Gimenes, Régio Marcio |
dc.subject.por.fl_str_mv |
Assimetria de Informações Modelagem Estatística Inadimplência Cooperativismo de Crédito |
topic |
Assimetria de Informações Modelagem Estatística Inadimplência Cooperativismo de Crédito |
description |
This paper aims at developing a model that may help a credit cooperative in the region of Toledo, Paraná, in the analysis and concession of agricultural credit, estimating the probability of execution of the contracts, what permits to predict a possible default, using the logistic regression model – Logit. The theoretical framework used, based on the Theory of Transaction Costs, identifies the default as the result of the incompleteness of contracts and the asymmetry of information between borrowers and the credit cooperative, in order to avoid the granting of credit to possible defaulters. To do so, we collected information on the borrowers from the records of the cooperative from 2004 to 2007, aiming at drawing a profile of the credit borrower. Later, we estimated the logistic regression model for 10 different samples to identify the one that received the greatest number of hits between payers and defaulters. We established that the estimated model was more efficient to identify the payers’ contracts than the defaulters’ contracts. Even with a rather low percentual average of accuracy the model may help the cooperative’s decision making in granting credit. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-11-17 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://online.unisc.br/seer/index.php/redes/article/view/934 10.17058/redes.v14i2.934 |
url |
https://online.unisc.br/seer/index.php/redes/article/view/934 |
identifier_str_mv |
10.17058/redes.v14i2.934 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://online.unisc.br/seer/index.php/redes/article/view/934/1441 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Edunisc - Universidade de Santa Cruz do Sul |
publisher.none.fl_str_mv |
Edunisc - Universidade de Santa Cruz do Sul |
dc.source.none.fl_str_mv |
Redes ; Vol. 14 No. 2 (2009); 80-102 Redes; Vol. 14 Núm. 2 (2009); 80-102 Redes; Vol. 14 No. 2 (2009); 80-102 Redes; v. 14 n. 2 (2009); 80-102 1982-6745 reponame:Redes (Santa Cruz do Sul. Online) instname:Universidade de Santa Cruz do Sul (UNISC) instacron:UNISC |
instname_str |
Universidade de Santa Cruz do Sul (UNISC) |
instacron_str |
UNISC |
institution |
UNISC |
reponame_str |
Redes (Santa Cruz do Sul. Online) |
collection |
Redes (Santa Cruz do Sul. Online) |
repository.name.fl_str_mv |
Redes (Santa Cruz do Sul. Online) - Universidade de Santa Cruz do Sul (UNISC) |
repository.mail.fl_str_mv |
redes_unisc_maff@terra.com.br||etges@unisc.br |
_version_ |
1800218767978921984 |