Management theory and big data literature: From a review to a research agenda

Detalhes bibliográficos
Autor(a) principal: Fiorini, Paula de Camargo [UNESP]
Data de Publicação: 2018
Outros Autores: Roman Pais Seles, Bruno Michel [UNESP], Jabbour, Charbel Jose Chiappetta, Mariano, Enzo Barberio [UNESP], Jabbour, Ana Beatriz Lopes de Sousa
Tipo de documento: Conjunto de dados
Idioma: eng
Título da fonte: Repositório Institucional da UNESP (dados de pesquisa)
Texto Completo: http://dx.doi.org/10.1016/j.ijinfomgt.2018.07.005
http://hdl.handle.net/11449/184974
Resumo: The purpose of this study is to enrich the existing state-of-the-art literature on the impact of big data on business growth by examining how dozens of organizational theories can be applied to enhance the understanding of the effects of big data on organizational performance. While the majority of management disciplines have had research dedicated to the conceptual discussion of how to link a variety of organizational theories to empirically quantified research topics, the body of research into big data so far lacks an academic work capable of systematising the organizational theories supporting big data domain. The three main contributions of this work are: (a) it addresses the application of dozens of organizational theories to big data research; (b) it offers a research agenda on how to link organizational theories to empirical research in big data; and (c) it foresees promising linkages between organizational theories and the effects of big data on organizational performance, with the aim of contributing to further research in this field. This work concludes by presenting implications for researchers and managers, and by highlighting intrinsic limitations of the research.
id UNSP-2_8c67cf19c5c04d4def25ed17e1c354e1
oai_identifier_str oai:repositorio.unesp.br:11449/184974
network_acronym_str UNSP-2
network_name_str Repositório Institucional da UNESP (dados de pesquisa)
repository_id_str
spelling Management theory and big data literature: From a review to a research agendaBig dataBig data analyticsOrganizational theoryFirms' performanceResearch agendaThe purpose of this study is to enrich the existing state-of-the-art literature on the impact of big data on business growth by examining how dozens of organizational theories can be applied to enhance the understanding of the effects of big data on organizational performance. While the majority of management disciplines have had research dedicated to the conceptual discussion of how to link a variety of organizational theories to empirically quantified research topics, the body of research into big data so far lacks an academic work capable of systematising the organizational theories supporting big data domain. The three main contributions of this work are: (a) it addresses the application of dozens of organizational theories to big data research; (b) it offers a research agenda on how to link organizational theories to empirical research in big data; and (c) it foresees promising linkages between organizational theories and the effects of big data on organizational performance, with the aim of contributing to further research in this field. This work concludes by presenting implications for researchers and managers, and by highlighting intrinsic limitations of the research.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sao Paulo State Univ, Prod Engn Dept, Av Engn Luiz Edmundo C Coube 14-01, BR-17033360 Bauru, SP, BrazilMontpellier Business Sch, Montpellier Res Management, 2300 Ave Moulins, F-34185 Montpellier 4, FranceSao Paulo State Univ, Prod Engn Dept, Av Engn Luiz Edmundo C Coube 14-01, BR-17033360 Bauru, SP, BrazilCAPES: 88881.133599/2016-01Elsevier B.V.Universidade Estadual Paulista (Unesp)Montpellier Business SchFiorini, Paula de Camargo [UNESP]Roman Pais Seles, Bruno Michel [UNESP]Jabbour, Charbel Jose ChiappettaMariano, Enzo Barberio [UNESP]Jabbour, Ana Beatriz Lopes de Sousa2019-10-04T12:31:33Z2019-10-04T12:31:33Z2018-12-01Resenhainfo:eu-repo/semantics/datasetinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/dataset112-129http://dx.doi.org/10.1016/j.ijinfomgt.2018.07.005International Journal Of Information Management. Oxford: Elsevier Sci Ltd, v. 43, p. 112-129, 2018.0268-4012http://hdl.handle.net/11449/18497410.1016/j.ijinfomgt.2018.07.005WOS:00044796330001066391645670367090000-0002-9577-3297Web of Sciencereponame:Repositório Institucional da UNESP (dados de pesquisa)instname:Universidade Estadual Paulista (UNESP)instacron:UNSPengInternational Journal Of Information Managementinfo:eu-repo/semantics/openAccess2024-06-28T13:18:34Zoai:repositorio.unesp.br:11449/184974Repositório de Dados de PesquisaPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:2024-06-28T13:18:34Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Management theory and big data literature: From a review to a research agenda
title Management theory and big data literature: From a review to a research agenda
spellingShingle Management theory and big data literature: From a review to a research agenda
Fiorini, Paula de Camargo [UNESP]
Big data
Big data analytics
Organizational theory
Firms' performance
Research agenda
title_short Management theory and big data literature: From a review to a research agenda
title_full Management theory and big data literature: From a review to a research agenda
title_fullStr Management theory and big data literature: From a review to a research agenda
title_full_unstemmed Management theory and big data literature: From a review to a research agenda
title_sort Management theory and big data literature: From a review to a research agenda
author Fiorini, Paula de Camargo [UNESP]
author_facet Fiorini, Paula de Camargo [UNESP]
Roman Pais Seles, Bruno Michel [UNESP]
Jabbour, Charbel Jose Chiappetta
Mariano, Enzo Barberio [UNESP]
Jabbour, Ana Beatriz Lopes de Sousa
author_role author
author2 Roman Pais Seles, Bruno Michel [UNESP]
Jabbour, Charbel Jose Chiappetta
Mariano, Enzo Barberio [UNESP]
Jabbour, Ana Beatriz Lopes de Sousa
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Montpellier Business Sch
dc.contributor.author.fl_str_mv Fiorini, Paula de Camargo [UNESP]
Roman Pais Seles, Bruno Michel [UNESP]
Jabbour, Charbel Jose Chiappetta
Mariano, Enzo Barberio [UNESP]
Jabbour, Ana Beatriz Lopes de Sousa
dc.subject.por.fl_str_mv Big data
Big data analytics
Organizational theory
Firms' performance
Research agenda
topic Big data
Big data analytics
Organizational theory
Firms' performance
Research agenda
description The purpose of this study is to enrich the existing state-of-the-art literature on the impact of big data on business growth by examining how dozens of organizational theories can be applied to enhance the understanding of the effects of big data on organizational performance. While the majority of management disciplines have had research dedicated to the conceptual discussion of how to link a variety of organizational theories to empirically quantified research topics, the body of research into big data so far lacks an academic work capable of systematising the organizational theories supporting big data domain. The three main contributions of this work are: (a) it addresses the application of dozens of organizational theories to big data research; (b) it offers a research agenda on how to link organizational theories to empirical research in big data; and (c) it foresees promising linkages between organizational theories and the effects of big data on organizational performance, with the aim of contributing to further research in this field. This work concludes by presenting implications for researchers and managers, and by highlighting intrinsic limitations of the research.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-01
2019-10-04T12:31:33Z
2019-10-04T12:31:33Z
dc.type.driver.fl_str_mv Resenha
info:eu-repo/semantics/dataset
info:eu-repo/semantics/publishedVersion
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/dataset
format dataset
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.ijinfomgt.2018.07.005
International Journal Of Information Management. Oxford: Elsevier Sci Ltd, v. 43, p. 112-129, 2018.
0268-4012
http://hdl.handle.net/11449/184974
10.1016/j.ijinfomgt.2018.07.005
WOS:000447963300010
6639164567036709
0000-0002-9577-3297
url http://dx.doi.org/10.1016/j.ijinfomgt.2018.07.005
http://hdl.handle.net/11449/184974
identifier_str_mv International Journal Of Information Management. Oxford: Elsevier Sci Ltd, v. 43, p. 112-129, 2018.
0268-4012
10.1016/j.ijinfomgt.2018.07.005
WOS:000447963300010
6639164567036709
0000-0002-9577-3297
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal Of Information Management
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 112-129
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP (dados de pesquisa)
instname:Universidade Estadual Paulista (UNESP)
instacron:UNSP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNSP
institution UNSP
reponame_str Repositório Institucional da UNESP (dados de pesquisa)
collection Repositório Institucional da UNESP (dados de pesquisa)
repository.name.fl_str_mv Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1827771095850156032