Management theory and big data literature: From a review to a research agenda
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Conjunto de dados |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP (dados de pesquisa) |
Texto Completo: | http://dx.doi.org/10.1016/j.ijinfomgt.2018.07.005 http://hdl.handle.net/11449/184974 |
Resumo: | The purpose of this study is to enrich the existing state-of-the-art literature on the impact of big data on business growth by examining how dozens of organizational theories can be applied to enhance the understanding of the effects of big data on organizational performance. While the majority of management disciplines have had research dedicated to the conceptual discussion of how to link a variety of organizational theories to empirically quantified research topics, the body of research into big data so far lacks an academic work capable of systematising the organizational theories supporting big data domain. The three main contributions of this work are: (a) it addresses the application of dozens of organizational theories to big data research; (b) it offers a research agenda on how to link organizational theories to empirical research in big data; and (c) it foresees promising linkages between organizational theories and the effects of big data on organizational performance, with the aim of contributing to further research in this field. This work concludes by presenting implications for researchers and managers, and by highlighting intrinsic limitations of the research. |
id |
UNSP-2_8c67cf19c5c04d4def25ed17e1c354e1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184974 |
network_acronym_str |
UNSP-2 |
network_name_str |
Repositório Institucional da UNESP (dados de pesquisa) |
repository_id_str |
|
spelling |
Management theory and big data literature: From a review to a research agendaBig dataBig data analyticsOrganizational theoryFirms' performanceResearch agendaThe purpose of this study is to enrich the existing state-of-the-art literature on the impact of big data on business growth by examining how dozens of organizational theories can be applied to enhance the understanding of the effects of big data on organizational performance. While the majority of management disciplines have had research dedicated to the conceptual discussion of how to link a variety of organizational theories to empirically quantified research topics, the body of research into big data so far lacks an academic work capable of systematising the organizational theories supporting big data domain. The three main contributions of this work are: (a) it addresses the application of dozens of organizational theories to big data research; (b) it offers a research agenda on how to link organizational theories to empirical research in big data; and (c) it foresees promising linkages between organizational theories and the effects of big data on organizational performance, with the aim of contributing to further research in this field. This work concludes by presenting implications for researchers and managers, and by highlighting intrinsic limitations of the research.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sao Paulo State Univ, Prod Engn Dept, Av Engn Luiz Edmundo C Coube 14-01, BR-17033360 Bauru, SP, BrazilMontpellier Business Sch, Montpellier Res Management, 2300 Ave Moulins, F-34185 Montpellier 4, FranceSao Paulo State Univ, Prod Engn Dept, Av Engn Luiz Edmundo C Coube 14-01, BR-17033360 Bauru, SP, BrazilCAPES: 88881.133599/2016-01Elsevier B.V.Universidade Estadual Paulista (Unesp)Montpellier Business SchFiorini, Paula de Camargo [UNESP]Roman Pais Seles, Bruno Michel [UNESP]Jabbour, Charbel Jose ChiappettaMariano, Enzo Barberio [UNESP]Jabbour, Ana Beatriz Lopes de Sousa2019-10-04T12:31:33Z2019-10-04T12:31:33Z2018-12-01Resenhainfo:eu-repo/semantics/datasetinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/dataset112-129http://dx.doi.org/10.1016/j.ijinfomgt.2018.07.005International Journal Of Information Management. Oxford: Elsevier Sci Ltd, v. 43, p. 112-129, 2018.0268-4012http://hdl.handle.net/11449/18497410.1016/j.ijinfomgt.2018.07.005WOS:00044796330001066391645670367090000-0002-9577-3297Web of Sciencereponame:Repositório Institucional da UNESP (dados de pesquisa)instname:Universidade Estadual Paulista (UNESP)instacron:UNSPengInternational Journal Of Information Managementinfo:eu-repo/semantics/openAccess2024-06-28T13:18:34Zoai:repositorio.unesp.br:11449/184974Repositório de Dados de PesquisaPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:2024-06-28T13:18:34Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Management theory and big data literature: From a review to a research agenda |
title |
Management theory and big data literature: From a review to a research agenda |
spellingShingle |
Management theory and big data literature: From a review to a research agenda Fiorini, Paula de Camargo [UNESP] Big data Big data analytics Organizational theory Firms' performance Research agenda |
title_short |
Management theory and big data literature: From a review to a research agenda |
title_full |
Management theory and big data literature: From a review to a research agenda |
title_fullStr |
Management theory and big data literature: From a review to a research agenda |
title_full_unstemmed |
Management theory and big data literature: From a review to a research agenda |
title_sort |
Management theory and big data literature: From a review to a research agenda |
author |
Fiorini, Paula de Camargo [UNESP] |
author_facet |
Fiorini, Paula de Camargo [UNESP] Roman Pais Seles, Bruno Michel [UNESP] Jabbour, Charbel Jose Chiappetta Mariano, Enzo Barberio [UNESP] Jabbour, Ana Beatriz Lopes de Sousa |
author_role |
author |
author2 |
Roman Pais Seles, Bruno Michel [UNESP] Jabbour, Charbel Jose Chiappetta Mariano, Enzo Barberio [UNESP] Jabbour, Ana Beatriz Lopes de Sousa |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Montpellier Business Sch |
dc.contributor.author.fl_str_mv |
Fiorini, Paula de Camargo [UNESP] Roman Pais Seles, Bruno Michel [UNESP] Jabbour, Charbel Jose Chiappetta Mariano, Enzo Barberio [UNESP] Jabbour, Ana Beatriz Lopes de Sousa |
dc.subject.por.fl_str_mv |
Big data Big data analytics Organizational theory Firms' performance Research agenda |
topic |
Big data Big data analytics Organizational theory Firms' performance Research agenda |
description |
The purpose of this study is to enrich the existing state-of-the-art literature on the impact of big data on business growth by examining how dozens of organizational theories can be applied to enhance the understanding of the effects of big data on organizational performance. While the majority of management disciplines have had research dedicated to the conceptual discussion of how to link a variety of organizational theories to empirically quantified research topics, the body of research into big data so far lacks an academic work capable of systematising the organizational theories supporting big data domain. The three main contributions of this work are: (a) it addresses the application of dozens of organizational theories to big data research; (b) it offers a research agenda on how to link organizational theories to empirical research in big data; and (c) it foresees promising linkages between organizational theories and the effects of big data on organizational performance, with the aim of contributing to further research in this field. This work concludes by presenting implications for researchers and managers, and by highlighting intrinsic limitations of the research. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-01 2019-10-04T12:31:33Z 2019-10-04T12:31:33Z |
dc.type.driver.fl_str_mv |
Resenha info:eu-repo/semantics/dataset info:eu-repo/semantics/publishedVersion |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/dataset |
format |
dataset |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.ijinfomgt.2018.07.005 International Journal Of Information Management. Oxford: Elsevier Sci Ltd, v. 43, p. 112-129, 2018. 0268-4012 http://hdl.handle.net/11449/184974 10.1016/j.ijinfomgt.2018.07.005 WOS:000447963300010 6639164567036709 0000-0002-9577-3297 |
url |
http://dx.doi.org/10.1016/j.ijinfomgt.2018.07.005 http://hdl.handle.net/11449/184974 |
identifier_str_mv |
International Journal Of Information Management. Oxford: Elsevier Sci Ltd, v. 43, p. 112-129, 2018. 0268-4012 10.1016/j.ijinfomgt.2018.07.005 WOS:000447963300010 6639164567036709 0000-0002-9577-3297 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal Of Information Management |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
112-129 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP (dados de pesquisa) instname:Universidade Estadual Paulista (UNESP) instacron:UNSP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNSP |
institution |
UNSP |
reponame_str |
Repositório Institucional da UNESP (dados de pesquisa) |
collection |
Repositório Institucional da UNESP (dados de pesquisa) |
repository.name.fl_str_mv |
Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1827771095850156032 |