Theoretical background and related works

Detalhes bibliográficos
Autor(a) principal: Afonso, Luis C.S. [UNESP]
Data de Publicação: 2022
Outros Autores: Falcão, Alexandre Xavier, Papa, João Paulo [UNESP]
Tipo de documento: Conjunto de dados
Idioma: eng
Título da fonte: Repositório Institucional da UNESP (dados de pesquisa)
Texto Completo: http://dx.doi.org/10.1016/B978-0-12-822688-9.00010-4
http://hdl.handle.net/11449/242083
Resumo: The Optimum-Path Forest (OPF) is a framework for the design of graph-based classifiers, which covers supervised, semisupervised, and unsupervised applications. The OPF is mainly characterized by its low training and classification times as well as competitive results against well-established machine learning techniques, such as Support Vector Machine and Artificial Neural Networks. Besides, the framework allows the design of different approaches based on the problem itself, which means a specific OPF-based classifier can be built for a given particular task. This paper surveyed several works published in the past years concerning OPF-based classifiers and sheds light on future trends concerning such a framework in the context of the deep learning era. © 2022 Copyright
id UNSP-2_b1e35ec1435aff163aca8d87dcad8b13
oai_identifier_str oai:repositorio.unesp.br:11449/242083
network_acronym_str UNSP-2
network_name_str Repositório Institucional da UNESP (dados de pesquisa)
repository_id_str
spelling Theoretical background and related worksImage-forest transformMachine learningOptimum-path forestPattern recognitionThe Optimum-Path Forest (OPF) is a framework for the design of graph-based classifiers, which covers supervised, semisupervised, and unsupervised applications. The OPF is mainly characterized by its low training and classification times as well as competitive results against well-established machine learning techniques, such as Support Vector Machine and Artificial Neural Networks. Besides, the framework allows the design of different approaches based on the problem itself, which means a specific OPF-based classifier can be built for a given particular task. This paper surveyed several works published in the past years concerning OPF-based classifiers and sheds light on future trends concerning such a framework in the context of the deep learning era. © 2022 CopyrightUNESP - São Paulo State University School of SciencesInstitute of Computing University of Campinas (UNICAMP) CampinasDepartment of Computing São Paulo State UniversityUNESP - São Paulo State University School of SciencesDepartment of Computing São Paulo State UniversityUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Afonso, Luis C.S. [UNESP]Falcão, Alexandre XavierPapa, João Paulo [UNESP]2023-03-02T08:37:43Z2023-03-02T08:37:43Z2022-01-24Capítulo de livroinfo:eu-repo/semantics/datasetinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/dataset5-54http://dx.doi.org/10.1016/B978-0-12-822688-9.00010-4Optimum-Path Forest: Theory, Algorithms, and Applications, p. 5-54.http://hdl.handle.net/11449/24208310.1016/B978-0-12-822688-9.00010-42-s2.0-85134936860Scopusreponame:Repositório Institucional da UNESP (dados de pesquisa)instname:Universidade Estadual Paulista (UNESP)instacron:UNSPengOptimum-Path Forest: Theory, Algorithms, and Applicationsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:11Zoai:repositorio.unesp.br:11449/242083Repositório de Dados de PesquisaPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:2024-04-23T16:11:11Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Theoretical background and related works
title Theoretical background and related works
spellingShingle Theoretical background and related works
Afonso, Luis C.S. [UNESP]
Image-forest transform
Machine learning
Optimum-path forest
Pattern recognition
title_short Theoretical background and related works
title_full Theoretical background and related works
title_fullStr Theoretical background and related works
title_full_unstemmed Theoretical background and related works
title_sort Theoretical background and related works
author Afonso, Luis C.S. [UNESP]
author_facet Afonso, Luis C.S. [UNESP]
Falcão, Alexandre Xavier
Papa, João Paulo [UNESP]
author_role author
author2 Falcão, Alexandre Xavier
Papa, João Paulo [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Afonso, Luis C.S. [UNESP]
Falcão, Alexandre Xavier
Papa, João Paulo [UNESP]
dc.subject.por.fl_str_mv Image-forest transform
Machine learning
Optimum-path forest
Pattern recognition
topic Image-forest transform
Machine learning
Optimum-path forest
Pattern recognition
description The Optimum-Path Forest (OPF) is a framework for the design of graph-based classifiers, which covers supervised, semisupervised, and unsupervised applications. The OPF is mainly characterized by its low training and classification times as well as competitive results against well-established machine learning techniques, such as Support Vector Machine and Artificial Neural Networks. Besides, the framework allows the design of different approaches based on the problem itself, which means a specific OPF-based classifier can be built for a given particular task. This paper surveyed several works published in the past years concerning OPF-based classifiers and sheds light on future trends concerning such a framework in the context of the deep learning era. © 2022 Copyright
publishDate 2022
dc.date.none.fl_str_mv 2022-01-24
2023-03-02T08:37:43Z
2023-03-02T08:37:43Z
dc.type.driver.fl_str_mv Capítulo de livro
info:eu-repo/semantics/dataset
info:eu-repo/semantics/publishedVersion
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/dataset
format dataset
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/B978-0-12-822688-9.00010-4
Optimum-Path Forest: Theory, Algorithms, and Applications, p. 5-54.
http://hdl.handle.net/11449/242083
10.1016/B978-0-12-822688-9.00010-4
2-s2.0-85134936860
url http://dx.doi.org/10.1016/B978-0-12-822688-9.00010-4
http://hdl.handle.net/11449/242083
identifier_str_mv Optimum-Path Forest: Theory, Algorithms, and Applications, p. 5-54.
10.1016/B978-0-12-822688-9.00010-4
2-s2.0-85134936860
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Optimum-Path Forest: Theory, Algorithms, and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 5-54
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP (dados de pesquisa)
instname:Universidade Estadual Paulista (UNESP)
instacron:UNSP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNSP
institution UNSP
reponame_str Repositório Institucional da UNESP (dados de pesquisa)
collection Repositório Institucional da UNESP (dados de pesquisa)
repository.name.fl_str_mv Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1827771898416594944