Theoretical background and related works
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Conjunto de dados |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP (dados de pesquisa) |
Texto Completo: | http://dx.doi.org/10.1016/B978-0-12-822688-9.00010-4 http://hdl.handle.net/11449/242083 |
Resumo: | The Optimum-Path Forest (OPF) is a framework for the design of graph-based classifiers, which covers supervised, semisupervised, and unsupervised applications. The OPF is mainly characterized by its low training and classification times as well as competitive results against well-established machine learning techniques, such as Support Vector Machine and Artificial Neural Networks. Besides, the framework allows the design of different approaches based on the problem itself, which means a specific OPF-based classifier can be built for a given particular task. This paper surveyed several works published in the past years concerning OPF-based classifiers and sheds light on future trends concerning such a framework in the context of the deep learning era. © 2022 Copyright |
id |
UNSP-2_b1e35ec1435aff163aca8d87dcad8b13 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/242083 |
network_acronym_str |
UNSP-2 |
network_name_str |
Repositório Institucional da UNESP (dados de pesquisa) |
repository_id_str |
|
spelling |
Theoretical background and related worksImage-forest transformMachine learningOptimum-path forestPattern recognitionThe Optimum-Path Forest (OPF) is a framework for the design of graph-based classifiers, which covers supervised, semisupervised, and unsupervised applications. The OPF is mainly characterized by its low training and classification times as well as competitive results against well-established machine learning techniques, such as Support Vector Machine and Artificial Neural Networks. Besides, the framework allows the design of different approaches based on the problem itself, which means a specific OPF-based classifier can be built for a given particular task. This paper surveyed several works published in the past years concerning OPF-based classifiers and sheds light on future trends concerning such a framework in the context of the deep learning era. © 2022 CopyrightUNESP - São Paulo State University School of SciencesInstitute of Computing University of Campinas (UNICAMP) CampinasDepartment of Computing São Paulo State UniversityUNESP - São Paulo State University School of SciencesDepartment of Computing São Paulo State UniversityUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Afonso, Luis C.S. [UNESP]Falcão, Alexandre XavierPapa, João Paulo [UNESP]2023-03-02T08:37:43Z2023-03-02T08:37:43Z2022-01-24Capítulo de livroinfo:eu-repo/semantics/datasetinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/dataset5-54http://dx.doi.org/10.1016/B978-0-12-822688-9.00010-4Optimum-Path Forest: Theory, Algorithms, and Applications, p. 5-54.http://hdl.handle.net/11449/24208310.1016/B978-0-12-822688-9.00010-42-s2.0-85134936860Scopusreponame:Repositório Institucional da UNESP (dados de pesquisa)instname:Universidade Estadual Paulista (UNESP)instacron:UNSPengOptimum-Path Forest: Theory, Algorithms, and Applicationsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:11Zoai:repositorio.unesp.br:11449/242083Repositório de Dados de PesquisaPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:2024-04-23T16:11:11Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Theoretical background and related works |
title |
Theoretical background and related works |
spellingShingle |
Theoretical background and related works Afonso, Luis C.S. [UNESP] Image-forest transform Machine learning Optimum-path forest Pattern recognition |
title_short |
Theoretical background and related works |
title_full |
Theoretical background and related works |
title_fullStr |
Theoretical background and related works |
title_full_unstemmed |
Theoretical background and related works |
title_sort |
Theoretical background and related works |
author |
Afonso, Luis C.S. [UNESP] |
author_facet |
Afonso, Luis C.S. [UNESP] Falcão, Alexandre Xavier Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Falcão, Alexandre Xavier Papa, João Paulo [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Afonso, Luis C.S. [UNESP] Falcão, Alexandre Xavier Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Image-forest transform Machine learning Optimum-path forest Pattern recognition |
topic |
Image-forest transform Machine learning Optimum-path forest Pattern recognition |
description |
The Optimum-Path Forest (OPF) is a framework for the design of graph-based classifiers, which covers supervised, semisupervised, and unsupervised applications. The OPF is mainly characterized by its low training and classification times as well as competitive results against well-established machine learning techniques, such as Support Vector Machine and Artificial Neural Networks. Besides, the framework allows the design of different approaches based on the problem itself, which means a specific OPF-based classifier can be built for a given particular task. This paper surveyed several works published in the past years concerning OPF-based classifiers and sheds light on future trends concerning such a framework in the context of the deep learning era. © 2022 Copyright |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-24 2023-03-02T08:37:43Z 2023-03-02T08:37:43Z |
dc.type.driver.fl_str_mv |
Capítulo de livro info:eu-repo/semantics/dataset info:eu-repo/semantics/publishedVersion |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/dataset |
format |
dataset |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/B978-0-12-822688-9.00010-4 Optimum-Path Forest: Theory, Algorithms, and Applications, p. 5-54. http://hdl.handle.net/11449/242083 10.1016/B978-0-12-822688-9.00010-4 2-s2.0-85134936860 |
url |
http://dx.doi.org/10.1016/B978-0-12-822688-9.00010-4 http://hdl.handle.net/11449/242083 |
identifier_str_mv |
Optimum-Path Forest: Theory, Algorithms, and Applications, p. 5-54. 10.1016/B978-0-12-822688-9.00010-4 2-s2.0-85134936860 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Optimum-Path Forest: Theory, Algorithms, and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
5-54 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP (dados de pesquisa) instname:Universidade Estadual Paulista (UNESP) instacron:UNSP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNSP |
institution |
UNSP |
reponame_str |
Repositório Institucional da UNESP (dados de pesquisa) |
collection |
Repositório Institucional da UNESP (dados de pesquisa) |
repository.name.fl_str_mv |
Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1827771898416594944 |