Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials

Detalhes bibliográficos
Autor(a) principal: Dimitrov, D. K.
Data de Publicação: 2003
Tipo de documento: Conjunto de dados
Idioma: eng
Título da fonte: Repositório Institucional da UNESP (dados de pesquisa)
Texto Completo: http://dx.doi.org/10.1016/S0377-0427(02)00645-3
http://hdl.handle.net/11449/21697
Resumo: Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.
id UNSP-2_c7e0301e496ce213468722e23d352820
oai_identifier_str oai:repositorio.unesp.br:11449/21697
network_acronym_str UNSP-2
network_name_str Repositório Institucional da UNESP (dados de pesquisa)
repository_id_str
spelling Convexity of the extreme zeros of Gegenbauer and Laguerre polynomialsultraspherical polynomialsLaguerre polynomialszerosconvexitymonotonicityLet C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.Univ Estadual Paulista, IBILCE, Dept Ciências Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUniv Estadual Paulista, IBILCE, Dept Ciências Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)Dimitrov, D. K.2014-05-20T14:01:30Z2014-05-20T14:01:30Z2003-04-01Artigoinfo:eu-repo/semantics/datasetinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/dataset171-180application/pdfhttp://dx.doi.org/10.1016/S0377-0427(02)00645-3Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003.0377-0427http://hdl.handle.net/11449/2169710.1016/S0377-0427(02)00645-3WOS:000181888700017WOS000181888700017.pdf1681267716971253Web of Sciencereponame:Repositório Institucional da UNESP (dados de pesquisa)instname:Universidade Estadual Paulista (UNESP)instacron:UNSPengJournal of Computational and Applied Mathematics1.6320,938info:eu-repo/semantics/openAccess2023-10-01T06:05:28Zoai:repositorio.unesp.br:11449/21697Repositório de Dados de PesquisaPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:2024-09-05T17:52:27.486973Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
title Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
spellingShingle Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
Dimitrov, D. K.
ultraspherical polynomials
Laguerre polynomials
zeros
convexity
monotonicity
title_short Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
title_full Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
title_fullStr Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
title_full_unstemmed Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
title_sort Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
author Dimitrov, D. K.
author_facet Dimitrov, D. K.
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Dimitrov, D. K.
dc.subject.por.fl_str_mv ultraspherical polynomials
Laguerre polynomials
zeros
convexity
monotonicity
topic ultraspherical polynomials
Laguerre polynomials
zeros
convexity
monotonicity
description Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.
publishDate 2003
dc.date.none.fl_str_mv 2003-04-01
2014-05-20T14:01:30Z
2014-05-20T14:01:30Z
dc.type.driver.fl_str_mv Artigo
info:eu-repo/semantics/dataset
info:eu-repo/semantics/publishedVersion
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/dataset
format dataset
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/S0377-0427(02)00645-3
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003.
0377-0427
http://hdl.handle.net/11449/21697
10.1016/S0377-0427(02)00645-3
WOS:000181888700017
WOS000181888700017.pdf
1681267716971253
url http://dx.doi.org/10.1016/S0377-0427(02)00645-3
http://hdl.handle.net/11449/21697
identifier_str_mv Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003.
0377-0427
10.1016/S0377-0427(02)00645-3
WOS:000181888700017
WOS000181888700017.pdf
1681267716971253
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Computational and Applied Mathematics
1.632
0,938
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 171-180
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP (dados de pesquisa)
instname:Universidade Estadual Paulista (UNESP)
instacron:UNSP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNSP
institution UNSP
reponame_str Repositório Institucional da UNESP (dados de pesquisa)
collection Repositório Institucional da UNESP (dados de pesquisa)
repository.name.fl_str_mv Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1827769373445586944