Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Conjunto de dados |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP (dados de pesquisa) |
Texto Completo: | http://dx.doi.org/10.1016/S0377-0427(02)00645-3 http://hdl.handle.net/11449/21697 |
Resumo: | Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V. |
id |
UNSP-2_c7e0301e496ce213468722e23d352820 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/21697 |
network_acronym_str |
UNSP-2 |
network_name_str |
Repositório Institucional da UNESP (dados de pesquisa) |
repository_id_str |
|
spelling |
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomialsultraspherical polynomialsLaguerre polynomialszerosconvexitymonotonicityLet C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.Univ Estadual Paulista, IBILCE, Dept Ciências Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUniv Estadual Paulista, IBILCE, Dept Ciências Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)Dimitrov, D. K.2014-05-20T14:01:30Z2014-05-20T14:01:30Z2003-04-01Artigoinfo:eu-repo/semantics/datasetinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/dataset171-180application/pdfhttp://dx.doi.org/10.1016/S0377-0427(02)00645-3Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003.0377-0427http://hdl.handle.net/11449/2169710.1016/S0377-0427(02)00645-3WOS:000181888700017WOS000181888700017.pdf1681267716971253Web of Sciencereponame:Repositório Institucional da UNESP (dados de pesquisa)instname:Universidade Estadual Paulista (UNESP)instacron:UNSPengJournal of Computational and Applied Mathematics1.6320,938info:eu-repo/semantics/openAccess2023-10-01T06:05:28Zoai:repositorio.unesp.br:11449/21697Repositório de Dados de PesquisaPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:2024-09-05T17:52:27.486973Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials |
title |
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials |
spellingShingle |
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials Dimitrov, D. K. ultraspherical polynomials Laguerre polynomials zeros convexity monotonicity |
title_short |
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials |
title_full |
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials |
title_fullStr |
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials |
title_full_unstemmed |
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials |
title_sort |
Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials |
author |
Dimitrov, D. K. |
author_facet |
Dimitrov, D. K. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Dimitrov, D. K. |
dc.subject.por.fl_str_mv |
ultraspherical polynomials Laguerre polynomials zeros convexity monotonicity |
topic |
ultraspherical polynomials Laguerre polynomials zeros convexity monotonicity |
description |
Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-04-01 2014-05-20T14:01:30Z 2014-05-20T14:01:30Z |
dc.type.driver.fl_str_mv |
Artigo info:eu-repo/semantics/dataset info:eu-repo/semantics/publishedVersion |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/dataset |
format |
dataset |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/S0377-0427(02)00645-3 Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003. 0377-0427 http://hdl.handle.net/11449/21697 10.1016/S0377-0427(02)00645-3 WOS:000181888700017 WOS000181888700017.pdf 1681267716971253 |
url |
http://dx.doi.org/10.1016/S0377-0427(02)00645-3 http://hdl.handle.net/11449/21697 |
identifier_str_mv |
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003. 0377-0427 10.1016/S0377-0427(02)00645-3 WOS:000181888700017 WOS000181888700017.pdf 1681267716971253 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Computational and Applied Mathematics 1.632 0,938 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
171-180 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP (dados de pesquisa) instname:Universidade Estadual Paulista (UNESP) instacron:UNSP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNSP |
institution |
UNSP |
reponame_str |
Repositório Institucional da UNESP (dados de pesquisa) |
collection |
Repositório Institucional da UNESP (dados de pesquisa) |
repository.name.fl_str_mv |
Repositório Institucional da UNESP (dados de pesquisa) - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1827769373445586944 |