Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriais

Detalhes bibliográficos
Autor(a) principal: Santos, Lucas Janoni dos
Data de Publicação: 2021
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/214015
Resumo: Artificial neural networks (ANNs) are computational models similar to the structure and functioning of the human brain. They are systems in which basic processing units (neurons) are distributed and interconnected by different connections (synapses), implemented by different mathematical functions, vectors and matrices. They present the ability to acquire and record information from the processing of a database, having a high capacity to map and solve non-linear problems. Due to these characteristics, RNAs were used to quantify and classify the mass percentage of sugarcane and impurities typically found in their harvest, since they can cause increased energy consumption in the preparation of the cane, extraction losses, difficulties in the broth’s treatment and equipment wear. The quantification and classification of the 146 samples were made using digital information from digital images converted into color scales (RGB, HSV, rgb and L), a non-invasive data acquisition method. The classification involved dividing the samples into two classes: 90-100% (class 1) and 41- 89% (class 2) of sugarcane, by weight. The implementation of artificial neural networks were performed in the MATLAB R2018a software with the nnstart tool, using the Levemberg-Marquadt algorithm (trainlm) for the prediction models and the scaled conjugated gradient algorithm (traincsg) for the classification models. The neurons’ number in the intermediate layer was adjusted by trial and error until the best result by the ANNs was achieved. In both processes there were a random division of the samples: 70% for the training of the network, 15% for its validation and the remaining 15% for the ANN test. The results obtained by the ANNs were very promising, since it was possible to predict the amounts of sugarcane, plant material and soil with low absolute errors and high correlation coefficients. It was also possible to classify all samples correctly, even in the face of a complex and multivariate data set such as digital image parameters.
id UNSP_000597968a378999034f0ccd00d03dab
oai_identifier_str oai:repositorio.unesp.br:11449/214015
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriaisUse of artificial intelligence to quantify and classify impurities in sugarcane for industrial purposesArtificial Neural NetworksDigital imagesSugarcaneImpuritiesClassificationPredictionCana-de-açúcarImpurezasClassificaçãoPrediçãoRedes neurais artificiaisImagens digitaisArtificial neural networks (ANNs) are computational models similar to the structure and functioning of the human brain. They are systems in which basic processing units (neurons) are distributed and interconnected by different connections (synapses), implemented by different mathematical functions, vectors and matrices. They present the ability to acquire and record information from the processing of a database, having a high capacity to map and solve non-linear problems. Due to these characteristics, RNAs were used to quantify and classify the mass percentage of sugarcane and impurities typically found in their harvest, since they can cause increased energy consumption in the preparation of the cane, extraction losses, difficulties in the broth’s treatment and equipment wear. The quantification and classification of the 146 samples were made using digital information from digital images converted into color scales (RGB, HSV, rgb and L), a non-invasive data acquisition method. The classification involved dividing the samples into two classes: 90-100% (class 1) and 41- 89% (class 2) of sugarcane, by weight. The implementation of artificial neural networks were performed in the MATLAB R2018a software with the nnstart tool, using the Levemberg-Marquadt algorithm (trainlm) for the prediction models and the scaled conjugated gradient algorithm (traincsg) for the classification models. The neurons’ number in the intermediate layer was adjusted by trial and error until the best result by the ANNs was achieved. In both processes there were a random division of the samples: 70% for the training of the network, 15% for its validation and the remaining 15% for the ANN test. The results obtained by the ANNs were very promising, since it was possible to predict the amounts of sugarcane, plant material and soil with low absolute errors and high correlation coefficients. It was also possible to classify all samples correctly, even in the face of a complex and multivariate data set such as digital image parameters.Redes neurais artificiais (RNAs) são modelos computacionais que relembram a estrutura e o funcionamento do cérebro humano. São sistemas em que há distribuição de unidades básicas de processamento (neurônios), interligados por diversas conexões (sinapses), implementadas por funções matemáticas diversas, vetores e matrizes. Apresentam a habilidade de adquirir e registrar informações a partir do processamento de um banco de dados, tendo elevada capacidade de mapear e resolver problemas não- lineares. Em virtude dessas características, foram utilizadas RNAs para quantificar e classificar a porcentagem mássica de cana-de-açúcar e de impurezas tipicamente encontradas em sua colheita, uma vez que elas podem causar aumento no consumo de energia no preparo da cana, perdas de extração, dificuldades para o tratamento do caldo e desgaste de equipamentos. A quantificação e a classificação das 146 amostras foram feitas a partir da utilização de informações numéricas de imagens digitais convertidas em escalas de cores (RGB, HSV, rgb e L), um método de aquisição de dados não invasivo. A classificação envolveu a divisão das amostras em duas classes: 90-100% (classe 1) e 41-89% (classe 2) de cana-de-açúcar, em massa. A implementação das redes neurais artificiais foi realizada no software MATLAB R2018a a partir da ferramenta nnstart, sendo utilizado o algoritmo de Levemberg-Marquadt (trainlm) para os modelos de predição e o algoritmo do gradiente conjugado escalonado (traincsg) para os modelos de classificação. O número de neurônios na camada intermediária foi ajustado por tentativa e erro até alcançar o melhor resultado pelas RNAs. Em ambos os processos houve divisão aleatória das amostras, sendo 70% para a realização do treinamento da rede, 15% para a sua validação e os 15% restantes para o teste das RNAs. Os resultados obtidos pelas RNAs foram bastante promissores, uma vez que foi possível predizer as quantidades de cana-de-açúcar, material vegetal e solo com baixos erros absolutos, além de altos coeficientes de correlação. Foi possível, também, classificar todas as amostras corretamente, mesmo diante de um conjunto de dados complexo e multivariado como o de parâmetros de imagens digitais.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2018/03690-1Universidade Estadual Paulista (Unesp)Nascimento, Érica Regina Filletti [UNESP]Universidade Estadual Paulista (Unesp)Santos, Lucas Janoni dos2021-08-17T00:57:11Z2021-08-17T00:57:11Z2021-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfhttp://hdl.handle.net/11449/214015porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2023-12-07T06:20:34Zoai:repositorio.unesp.br:11449/214015Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:44:23.408288Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriais
Use of artificial intelligence to quantify and classify impurities in sugarcane for industrial purposes
title Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriais
spellingShingle Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriais
Santos, Lucas Janoni dos
Artificial Neural Networks
Digital images
Sugarcane
Impurities
Classification
Prediction
Cana-de-açúcar
Impurezas
Classificação
Predição
Redes neurais artificiais
Imagens digitais
title_short Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriais
title_full Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriais
title_fullStr Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriais
title_full_unstemmed Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriais
title_sort Uso de inteligência artificial para quantificar e classificar impurezas em cana-de-açúcar para fins industriais
author Santos, Lucas Janoni dos
author_facet Santos, Lucas Janoni dos
author_role author
dc.contributor.none.fl_str_mv Nascimento, Érica Regina Filletti [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Santos, Lucas Janoni dos
dc.subject.por.fl_str_mv Artificial Neural Networks
Digital images
Sugarcane
Impurities
Classification
Prediction
Cana-de-açúcar
Impurezas
Classificação
Predição
Redes neurais artificiais
Imagens digitais
topic Artificial Neural Networks
Digital images
Sugarcane
Impurities
Classification
Prediction
Cana-de-açúcar
Impurezas
Classificação
Predição
Redes neurais artificiais
Imagens digitais
description Artificial neural networks (ANNs) are computational models similar to the structure and functioning of the human brain. They are systems in which basic processing units (neurons) are distributed and interconnected by different connections (synapses), implemented by different mathematical functions, vectors and matrices. They present the ability to acquire and record information from the processing of a database, having a high capacity to map and solve non-linear problems. Due to these characteristics, RNAs were used to quantify and classify the mass percentage of sugarcane and impurities typically found in their harvest, since they can cause increased energy consumption in the preparation of the cane, extraction losses, difficulties in the broth’s treatment and equipment wear. The quantification and classification of the 146 samples were made using digital information from digital images converted into color scales (RGB, HSV, rgb and L), a non-invasive data acquisition method. The classification involved dividing the samples into two classes: 90-100% (class 1) and 41- 89% (class 2) of sugarcane, by weight. The implementation of artificial neural networks were performed in the MATLAB R2018a software with the nnstart tool, using the Levemberg-Marquadt algorithm (trainlm) for the prediction models and the scaled conjugated gradient algorithm (traincsg) for the classification models. The neurons’ number in the intermediate layer was adjusted by trial and error until the best result by the ANNs was achieved. In both processes there were a random division of the samples: 70% for the training of the network, 15% for its validation and the remaining 15% for the ANN test. The results obtained by the ANNs were very promising, since it was possible to predict the amounts of sugarcane, plant material and soil with low absolute errors and high correlation coefficients. It was also possible to classify all samples correctly, even in the face of a complex and multivariate data set such as digital image parameters.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-17T00:57:11Z
2021-08-17T00:57:11Z
2021-03-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/214015
url http://hdl.handle.net/11449/214015
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129111061692416