Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1186/s40323-015-0054-4 http://hdl.handle.net/11449/228189 |
Resumo: | We present a numerical study of a stabilization method for computing confined and free-surface flows of highly elastic viscoelastic fluids. In this approach, the constitutive equation based on the conformation tensor, which is used to define the viscoelastic model, is modified introducing an evolution equation for the square-root conformation tensor. Both confined and free-surface flows are considered, using two different numerical codes. A finite volume method is used for confined flows and a finite difference code developed in the context of the marker-and-cell method is used for confined and free-surface flows. The implementation of the square-root formulation was performed in both numerical schemes and discussed in terms of its ability and efficiency to compute steady and transient viscoelastic fluid flows. The numerical results show that the square-root formulation performs efficiently in the tested benchmark problems at high-Weissenberg number flows, such as the lid-driven cavity flow, the flow around a confined cylinder, the cross-slot flow and the impacting drop free surface problem. |
id |
UNSP_0015679f1a92365381aeb2d0f670872c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/228189 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flowsComplex flowsConfined flowsFree-surface flowsHigh-Weissenberg Number ProblemSquare-root formulationViscoelastic fluidsWe present a numerical study of a stabilization method for computing confined and free-surface flows of highly elastic viscoelastic fluids. In this approach, the constitutive equation based on the conformation tensor, which is used to define the viscoelastic model, is modified introducing an evolution equation for the square-root conformation tensor. Both confined and free-surface flows are considered, using two different numerical codes. A finite volume method is used for confined flows and a finite difference code developed in the context of the marker-and-cell method is used for confined and free-surface flows. The implementation of the square-root formulation was performed in both numerical schemes and discussed in terms of its ability and efficiency to compute steady and transient viscoelastic fluid flows. The numerical results show that the square-root formulation performs efficiently in the tested benchmark problems at high-Weissenberg number flows, such as the lid-driven cavity flow, the flow around a confined cylinder, the cross-slot flow and the impacting drop free surface problem.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)European Research CouncilConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação para a Ciência e a TecnologiaDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista “Júlio de Mesquita Filho”Departamento de Engenharia Química CEFT Faculdade de Engenharia da Universidade do PortoCEFT Faculdade de Engenharia da Universidade do PortoDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista “Júlio de Mesquita Filho”FAPESP: 2012/02517-8FAPESP: 2013/07375-0European Research Council: 307499CNPq: 309514/2013-4CNPq: 473589/2013-3Fundação para a Ciência e a Tecnologia: 75432/2010CNPq: MEC/MCTI/CAPES/CNPq/FAPs 61/2011Universidade Estadual Paulista (UNESP)Faculdade de Engenharia da Universidade do PortoPalhares Junior, Irineu L. [UNESP]Oishi, Cassio M. [UNESP]Afonso, Alexandre M.Alves, Manuel A.Pinho, Fernando T.2022-04-29T07:50:09Z2022-04-29T07:50:09Z2016-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1186/s40323-015-0054-4Advanced Modeling and Simulation in Engineering Sciences, v. 3, n. 1, 2016.2213-7467http://hdl.handle.net/11449/22818910.1186/s40323-015-0054-42-s2.0-84979250920Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvanced Modeling and Simulation in Engineering Sciencesinfo:eu-repo/semantics/openAccess2024-06-19T14:32:05Zoai:repositorio.unesp.br:11449/228189Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:37:05.434376Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows |
title |
Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows |
spellingShingle |
Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows Palhares Junior, Irineu L. [UNESP] Complex flows Confined flows Free-surface flows High-Weissenberg Number Problem Square-root formulation Viscoelastic fluids |
title_short |
Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows |
title_full |
Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows |
title_fullStr |
Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows |
title_full_unstemmed |
Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows |
title_sort |
Numerical study of the square-root conformation tensor formulation for confined and free-surface viscoelastic fluid flows |
author |
Palhares Junior, Irineu L. [UNESP] |
author_facet |
Palhares Junior, Irineu L. [UNESP] Oishi, Cassio M. [UNESP] Afonso, Alexandre M. Alves, Manuel A. Pinho, Fernando T. |
author_role |
author |
author2 |
Oishi, Cassio M. [UNESP] Afonso, Alexandre M. Alves, Manuel A. Pinho, Fernando T. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Faculdade de Engenharia da Universidade do Porto |
dc.contributor.author.fl_str_mv |
Palhares Junior, Irineu L. [UNESP] Oishi, Cassio M. [UNESP] Afonso, Alexandre M. Alves, Manuel A. Pinho, Fernando T. |
dc.subject.por.fl_str_mv |
Complex flows Confined flows Free-surface flows High-Weissenberg Number Problem Square-root formulation Viscoelastic fluids |
topic |
Complex flows Confined flows Free-surface flows High-Weissenberg Number Problem Square-root formulation Viscoelastic fluids |
description |
We present a numerical study of a stabilization method for computing confined and free-surface flows of highly elastic viscoelastic fluids. In this approach, the constitutive equation based on the conformation tensor, which is used to define the viscoelastic model, is modified introducing an evolution equation for the square-root conformation tensor. Both confined and free-surface flows are considered, using two different numerical codes. A finite volume method is used for confined flows and a finite difference code developed in the context of the marker-and-cell method is used for confined and free-surface flows. The implementation of the square-root formulation was performed in both numerical schemes and discussed in terms of its ability and efficiency to compute steady and transient viscoelastic fluid flows. The numerical results show that the square-root formulation performs efficiently in the tested benchmark problems at high-Weissenberg number flows, such as the lid-driven cavity flow, the flow around a confined cylinder, the cross-slot flow and the impacting drop free surface problem. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-01 2022-04-29T07:50:09Z 2022-04-29T07:50:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1186/s40323-015-0054-4 Advanced Modeling and Simulation in Engineering Sciences, v. 3, n. 1, 2016. 2213-7467 http://hdl.handle.net/11449/228189 10.1186/s40323-015-0054-4 2-s2.0-84979250920 |
url |
http://dx.doi.org/10.1186/s40323-015-0054-4 http://hdl.handle.net/11449/228189 |
identifier_str_mv |
Advanced Modeling and Simulation in Engineering Sciences, v. 3, n. 1, 2016. 2213-7467 10.1186/s40323-015-0054-4 2-s2.0-84979250920 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Advanced Modeling and Simulation in Engineering Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129341656137728 |