Non-decimated Wavelet Transform for a Shift-invariant Analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.5540/tema.2018.019.01.0093 http://hdl.handle.net/11449/212207 |
Resumo: | Due to the ability of time-frequency location, the wavelet transform has been applied in several areas of research involving signal analysis and processing, often replacing the conventional Fourier transform. The discrete wavelet transform has great application potential, being an important tool in signal compression, signal and image processing, smoothing and de-noising data. It also presents advantages over the continuous version because of its easy implementation, good computational performance and perfect reconstruction of the signal upon inversion. Nevertheless, the downsampling required in the computation of the discrete wavelet transform makes it shift variant and not appropriated to some applications, such as for signals or time series analysis. On the other hand, the Non-Decimated Discrete Wavelet Transform is shift-invariant because it eliminates the downsampling and, consequently, is more appropriate for identifying both stationary and non-stationary behaviors in signals. However, the non-decimated wavelet transform has been underused in the literature. This paper intends to show the advantages of using the non-decimated wavelet transform in signal analysis. The main theoretical and practical aspects of the multi-scale analysis of time series from non-decimated wavelets in terms of its formulation using the same pyramidal algorithm of the decimated wavelet transform was presented. Finally, applications with a simulated and real time series compare the performance of the decimated and non-decimated wavelet transform, demonstrating the superiority of non-decimated one, mainly due to the shift-invariant analysis, patterns detection and more perfect reconstruction of a signal. |
id |
UNSP_016a4df4da9ea39599ee8653211ec3c9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/212207 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Non-decimated Wavelet Transform for a Shift-invariant AnalysisNon-decimated waveletsshift invariancetime seriessignal analysisWavelets não decimadasinvariância à translaçãoséries temporaisanálise de sinaisDue to the ability of time-frequency location, the wavelet transform has been applied in several areas of research involving signal analysis and processing, often replacing the conventional Fourier transform. The discrete wavelet transform has great application potential, being an important tool in signal compression, signal and image processing, smoothing and de-noising data. It also presents advantages over the continuous version because of its easy implementation, good computational performance and perfect reconstruction of the signal upon inversion. Nevertheless, the downsampling required in the computation of the discrete wavelet transform makes it shift variant and not appropriated to some applications, such as for signals or time series analysis. On the other hand, the Non-Decimated Discrete Wavelet Transform is shift-invariant because it eliminates the downsampling and, consequently, is more appropriate for identifying both stationary and non-stationary behaviors in signals. However, the non-decimated wavelet transform has been underused in the literature. This paper intends to show the advantages of using the non-decimated wavelet transform in signal analysis. The main theoretical and practical aspects of the multi-scale analysis of time series from non-decimated wavelets in terms of its formulation using the same pyramidal algorithm of the decimated wavelet transform was presented. Finally, applications with a simulated and real time series compare the performance of the decimated and non-decimated wavelet transform, demonstrating the superiority of non-decimated one, mainly due to the shift-invariant analysis, patterns detection and more perfect reconstruction of a signal.Devido sua habilidade de localização tempo-frequência, a Transformada wavelet tem sido aplicada em várias áreas de pesquisa envolvendo análise e processamento de dados, frequentemente substituindo a convencional Transformada de Fourier. A TransformadaWavelet Discreta tem um grande potencial de aplicação¸ destacando-se como uma importante ferramenta na compressão de sinal, processamento de imagem e sinal, suavização e filtragem de ruídos em dados. Ela também apresenta vantagens sobre a versão contínua por causa de sua fácil implementação, bom desempenho computacional e reconstrução perfeita do sinal após inversão. No entanto, a decimação requerida no cálculo da Transformada Wavelet Discreta a torna variante à translação e não apropriada para algumas aplicaões, tais como análise de sinais ou séries temporais. Por outro lado, a Transformada Wavelet Discreta Não Decimada é invariante à translação, porque elimina o processo de decimação, e consequentemente, é mais apropriada para identificar comportamentos estacionários e não estacionários presentes no sinal. No entanto, a Transformada Wavelet Não Decimada tem sido pouco usada na literatura. Esse artigo pretende mostrar as vantagens do uso na Transformada Wavelet Não Decimada na análise de sinais. Os principais aspectos teóricos e práticos da análise multiescala de séries temporais a partir das wavelets não decimadas, em termos de sua formulação usando o mesmo algoritmo piramidal da Transformada Wavelet Decimada, são apresentados. Por fim, aplicações com séries temporais simuladas e reais comparam o desempenho das transformadas wavelet decimada e não decimada, demonstrando a superioridade da wavelet não decimada, principalmente devido à análise invariante a translação, detecção de padrões e uma reconstrução mais perfeita do sinal.São Paulo State UniversityMaringá State UniversitySão Paulo State UniversitySociedade Brasileira de Matemática Aplicada e ComputacionalUniversidade Estadual Paulista (Unesp)Maringá State UniversityBrassarote, G.o.n. [UNESP]Souza, E.m.Monico, J.f.g. [UNESP]2021-07-14T10:36:19Z2021-07-14T10:36:19Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article93-110application/pdfhttp://dx.doi.org/10.5540/tema.2018.019.01.0093TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 93-110, 2018.1677-19662179-8451http://hdl.handle.net/11449/21220710.5540/tema.2018.019.01.0093S2179-84512018000100093S2179-84512018000100093.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTEMA (São Carlos)info:eu-repo/semantics/openAccess2023-12-16T06:19:08Zoai:repositorio.unesp.br:11449/212207Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:28:43.342019Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Non-decimated Wavelet Transform for a Shift-invariant Analysis |
title |
Non-decimated Wavelet Transform for a Shift-invariant Analysis |
spellingShingle |
Non-decimated Wavelet Transform for a Shift-invariant Analysis Brassarote, G.o.n. [UNESP] Non-decimated wavelets shift invariance time series signal analysis Wavelets não decimadas invariância à translação séries temporais análise de sinais |
title_short |
Non-decimated Wavelet Transform for a Shift-invariant Analysis |
title_full |
Non-decimated Wavelet Transform for a Shift-invariant Analysis |
title_fullStr |
Non-decimated Wavelet Transform for a Shift-invariant Analysis |
title_full_unstemmed |
Non-decimated Wavelet Transform for a Shift-invariant Analysis |
title_sort |
Non-decimated Wavelet Transform for a Shift-invariant Analysis |
author |
Brassarote, G.o.n. [UNESP] |
author_facet |
Brassarote, G.o.n. [UNESP] Souza, E.m. Monico, J.f.g. [UNESP] |
author_role |
author |
author2 |
Souza, E.m. Monico, J.f.g. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Maringá State University |
dc.contributor.author.fl_str_mv |
Brassarote, G.o.n. [UNESP] Souza, E.m. Monico, J.f.g. [UNESP] |
dc.subject.por.fl_str_mv |
Non-decimated wavelets shift invariance time series signal analysis Wavelets não decimadas invariância à translação séries temporais análise de sinais |
topic |
Non-decimated wavelets shift invariance time series signal analysis Wavelets não decimadas invariância à translação séries temporais análise de sinais |
description |
Due to the ability of time-frequency location, the wavelet transform has been applied in several areas of research involving signal analysis and processing, often replacing the conventional Fourier transform. The discrete wavelet transform has great application potential, being an important tool in signal compression, signal and image processing, smoothing and de-noising data. It also presents advantages over the continuous version because of its easy implementation, good computational performance and perfect reconstruction of the signal upon inversion. Nevertheless, the downsampling required in the computation of the discrete wavelet transform makes it shift variant and not appropriated to some applications, such as for signals or time series analysis. On the other hand, the Non-Decimated Discrete Wavelet Transform is shift-invariant because it eliminates the downsampling and, consequently, is more appropriate for identifying both stationary and non-stationary behaviors in signals. However, the non-decimated wavelet transform has been underused in the literature. This paper intends to show the advantages of using the non-decimated wavelet transform in signal analysis. The main theoretical and practical aspects of the multi-scale analysis of time series from non-decimated wavelets in terms of its formulation using the same pyramidal algorithm of the decimated wavelet transform was presented. Finally, applications with a simulated and real time series compare the performance of the decimated and non-decimated wavelet transform, demonstrating the superiority of non-decimated one, mainly due to the shift-invariant analysis, patterns detection and more perfect reconstruction of a signal. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2021-07-14T10:36:19Z 2021-07-14T10:36:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5540/tema.2018.019.01.0093 TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 93-110, 2018. 1677-1966 2179-8451 http://hdl.handle.net/11449/212207 10.5540/tema.2018.019.01.0093 S2179-84512018000100093 S2179-84512018000100093.pdf |
url |
http://dx.doi.org/10.5540/tema.2018.019.01.0093 http://hdl.handle.net/11449/212207 |
identifier_str_mv |
TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 93-110, 2018. 1677-1966 2179-8451 10.5540/tema.2018.019.01.0093 S2179-84512018000100093 S2179-84512018000100093.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
TEMA (São Carlos) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
93-110 application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129207510761472 |