Non-decimated Wavelet Transform for a Shift-invariant Analysis

Detalhes bibliográficos
Autor(a) principal: Brassarote, G.o.n. [UNESP]
Data de Publicação: 2018
Outros Autores: Souza, E.m., Monico, J.f.g. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.5540/tema.2018.019.01.0093
http://hdl.handle.net/11449/212207
Resumo: Due to the ability of time-frequency location, the wavelet transform has been applied in several areas of research involving signal analysis and processing, often replacing the conventional Fourier transform. The discrete wavelet transform has great application potential, being an important tool in signal compression, signal and image processing, smoothing and de-noising data. It also presents advantages over the continuous version because of its easy implementation, good computational performance and perfect reconstruction of the signal upon inversion. Nevertheless, the downsampling required in the computation of the discrete wavelet transform makes it shift variant and not appropriated to some applications, such as for signals or time series analysis. On the other hand, the Non-Decimated Discrete Wavelet Transform is shift-invariant because it eliminates the downsampling and, consequently, is more appropriate for identifying both stationary and non-stationary behaviors in signals. However, the non-decimated wavelet transform has been underused in the literature. This paper intends to show the advantages of using the non-decimated wavelet transform in signal analysis. The main theoretical and practical aspects of the multi-scale analysis of time series from non-decimated wavelets in terms of its formulation using the same pyramidal algorithm of the decimated wavelet transform was presented. Finally, applications with a simulated and real time series compare the performance of the decimated and non-decimated wavelet transform, demonstrating the superiority of non-decimated one, mainly due to the shift-invariant analysis, patterns detection and more perfect reconstruction of a signal.
id UNSP_016a4df4da9ea39599ee8653211ec3c9
oai_identifier_str oai:repositorio.unesp.br:11449/212207
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Non-decimated Wavelet Transform for a Shift-invariant AnalysisNon-decimated waveletsshift invariancetime seriessignal analysisWavelets não decimadasinvariância à translaçãoséries temporaisanálise de sinaisDue to the ability of time-frequency location, the wavelet transform has been applied in several areas of research involving signal analysis and processing, often replacing the conventional Fourier transform. The discrete wavelet transform has great application potential, being an important tool in signal compression, signal and image processing, smoothing and de-noising data. It also presents advantages over the continuous version because of its easy implementation, good computational performance and perfect reconstruction of the signal upon inversion. Nevertheless, the downsampling required in the computation of the discrete wavelet transform makes it shift variant and not appropriated to some applications, such as for signals or time series analysis. On the other hand, the Non-Decimated Discrete Wavelet Transform is shift-invariant because it eliminates the downsampling and, consequently, is more appropriate for identifying both stationary and non-stationary behaviors in signals. However, the non-decimated wavelet transform has been underused in the literature. This paper intends to show the advantages of using the non-decimated wavelet transform in signal analysis. The main theoretical and practical aspects of the multi-scale analysis of time series from non-decimated wavelets in terms of its formulation using the same pyramidal algorithm of the decimated wavelet transform was presented. Finally, applications with a simulated and real time series compare the performance of the decimated and non-decimated wavelet transform, demonstrating the superiority of non-decimated one, mainly due to the shift-invariant analysis, patterns detection and more perfect reconstruction of a signal.Devido sua habilidade de localização tempo-frequência, a Transformada wavelet tem sido aplicada em várias áreas de pesquisa envolvendo análise e processamento de dados, frequentemente substituindo a convencional Transformada de Fourier. A TransformadaWavelet Discreta tem um grande potencial de aplicação¸ destacando-se como uma importante ferramenta na compressão de sinal, processamento de imagem e sinal, suavização e filtragem de ruídos em dados. Ela também apresenta vantagens sobre a versão contínua por causa de sua fácil implementação, bom desempenho computacional e reconstrução perfeita do sinal após inversão. No entanto, a decimação requerida no cálculo da Transformada Wavelet Discreta a torna variante à translação e não apropriada para algumas aplicaões, tais como análise de sinais ou séries temporais. Por outro lado, a Transformada Wavelet Discreta Não Decimada é invariante à translação, porque elimina o processo de decimação, e consequentemente, é mais apropriada para identificar comportamentos estacionários e não estacionários presentes no sinal. No entanto, a Transformada Wavelet Não Decimada tem sido pouco usada na literatura. Esse artigo pretende mostrar as vantagens do uso na Transformada Wavelet Não Decimada na análise de sinais. Os principais aspectos teóricos e práticos da análise multiescala de séries temporais a partir das wavelets não decimadas, em termos de sua formulação usando o mesmo algoritmo piramidal da Transformada Wavelet Decimada, são apresentados. Por fim, aplicações com séries temporais simuladas e reais comparam o desempenho das transformadas wavelet decimada e não decimada, demonstrando a superioridade da wavelet não decimada, principalmente devido à análise invariante a translação, detecção de padrões e uma reconstrução mais perfeita do sinal.São Paulo State UniversityMaringá State UniversitySão Paulo State UniversitySociedade Brasileira de Matemática Aplicada e ComputacionalUniversidade Estadual Paulista (Unesp)Maringá State UniversityBrassarote, G.o.n. [UNESP]Souza, E.m.Monico, J.f.g. [UNESP]2021-07-14T10:36:19Z2021-07-14T10:36:19Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article93-110application/pdfhttp://dx.doi.org/10.5540/tema.2018.019.01.0093TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 93-110, 2018.1677-19662179-8451http://hdl.handle.net/11449/21220710.5540/tema.2018.019.01.0093S2179-84512018000100093S2179-84512018000100093.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTEMA (São Carlos)info:eu-repo/semantics/openAccess2023-12-16T06:19:08Zoai:repositorio.unesp.br:11449/212207Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:28:43.342019Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Non-decimated Wavelet Transform for a Shift-invariant Analysis
title Non-decimated Wavelet Transform for a Shift-invariant Analysis
spellingShingle Non-decimated Wavelet Transform for a Shift-invariant Analysis
Brassarote, G.o.n. [UNESP]
Non-decimated wavelets
shift invariance
time series
signal analysis
Wavelets não decimadas
invariância à translação
séries temporais
análise de sinais
title_short Non-decimated Wavelet Transform for a Shift-invariant Analysis
title_full Non-decimated Wavelet Transform for a Shift-invariant Analysis
title_fullStr Non-decimated Wavelet Transform for a Shift-invariant Analysis
title_full_unstemmed Non-decimated Wavelet Transform for a Shift-invariant Analysis
title_sort Non-decimated Wavelet Transform for a Shift-invariant Analysis
author Brassarote, G.o.n. [UNESP]
author_facet Brassarote, G.o.n. [UNESP]
Souza, E.m.
Monico, J.f.g. [UNESP]
author_role author
author2 Souza, E.m.
Monico, J.f.g. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Maringá State University
dc.contributor.author.fl_str_mv Brassarote, G.o.n. [UNESP]
Souza, E.m.
Monico, J.f.g. [UNESP]
dc.subject.por.fl_str_mv Non-decimated wavelets
shift invariance
time series
signal analysis
Wavelets não decimadas
invariância à translação
séries temporais
análise de sinais
topic Non-decimated wavelets
shift invariance
time series
signal analysis
Wavelets não decimadas
invariância à translação
séries temporais
análise de sinais
description Due to the ability of time-frequency location, the wavelet transform has been applied in several areas of research involving signal analysis and processing, often replacing the conventional Fourier transform. The discrete wavelet transform has great application potential, being an important tool in signal compression, signal and image processing, smoothing and de-noising data. It also presents advantages over the continuous version because of its easy implementation, good computational performance and perfect reconstruction of the signal upon inversion. Nevertheless, the downsampling required in the computation of the discrete wavelet transform makes it shift variant and not appropriated to some applications, such as for signals or time series analysis. On the other hand, the Non-Decimated Discrete Wavelet Transform is shift-invariant because it eliminates the downsampling and, consequently, is more appropriate for identifying both stationary and non-stationary behaviors in signals. However, the non-decimated wavelet transform has been underused in the literature. This paper intends to show the advantages of using the non-decimated wavelet transform in signal analysis. The main theoretical and practical aspects of the multi-scale analysis of time series from non-decimated wavelets in terms of its formulation using the same pyramidal algorithm of the decimated wavelet transform was presented. Finally, applications with a simulated and real time series compare the performance of the decimated and non-decimated wavelet transform, demonstrating the superiority of non-decimated one, mainly due to the shift-invariant analysis, patterns detection and more perfect reconstruction of a signal.
publishDate 2018
dc.date.none.fl_str_mv 2018
2021-07-14T10:36:19Z
2021-07-14T10:36:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5540/tema.2018.019.01.0093
TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 93-110, 2018.
1677-1966
2179-8451
http://hdl.handle.net/11449/212207
10.5540/tema.2018.019.01.0093
S2179-84512018000100093
S2179-84512018000100093.pdf
url http://dx.doi.org/10.5540/tema.2018.019.01.0093
http://hdl.handle.net/11449/212207
identifier_str_mv TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 93-110, 2018.
1677-1966
2179-8451
10.5540/tema.2018.019.01.0093
S2179-84512018000100093
S2179-84512018000100093.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv TEMA (São Carlos)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 93-110
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129207510761472