A tutorial review on entropy-based handcrafted feature extraction for information fusion

Detalhes bibliográficos
Autor(a) principal: Guido, Rodrigo Capobianco [UNESP]
Data de Publicação: 2018
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.inffus.2017.09.006
http://hdl.handle.net/11449/179166
Resumo: Entropy (H) is the main subject of this article, concisely written to serve as a tutorial introducing two feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C++ source-codes and enriched with example applications on restricted-vocabulary speech recognition and image synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the outcome of a partially pre-tuned deep neural network architecture which fuses important information, bringing a cutting-edge point-of-view for both DSP and PR communities.
id UNSP_01b4ce43dbf16658688e049e4b626f56
oai_identifier_str oai:repositorio.unesp.br:11449/179166
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A tutorial review on entropy-based handcrafted feature extraction for information fusionDeep networksEntropyHandcrafted feature extractionImage synthesisInformation fusionRestricted-vocabulary speech recognitionEntropy (H) is the main subject of this article, concisely written to serve as a tutorial introducing two feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C++ source-codes and enriched with example applications on restricted-vocabulary speech recognition and image synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the outcome of a partially pre-tuned deep neural network architecture which fuses important information, bringing a cutting-edge point-of-view for both DSP and PR communities.Instituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista São Paulo State University, Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000, São José do Rio PretoInstituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista São Paulo State University, Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000, São José do Rio PretoUniversidade Estadual Paulista (Unesp)Guido, Rodrigo Capobianco [UNESP]2018-12-11T17:34:03Z2018-12-11T17:34:03Z2018-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article161-175application/pdfhttp://dx.doi.org/10.1016/j.inffus.2017.09.006Information Fusion, v. 41, p. 161-175.1566-2535http://hdl.handle.net/11449/17916610.1016/j.inffus.2017.09.0062-s2.0-850293592762-s2.0-85029359276.pdf65420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation Fusion1,832info:eu-repo/semantics/openAccess2023-12-16T06:18:19Zoai:repositorio.unesp.br:11449/179166Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:28:13.255683Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A tutorial review on entropy-based handcrafted feature extraction for information fusion
title A tutorial review on entropy-based handcrafted feature extraction for information fusion
spellingShingle A tutorial review on entropy-based handcrafted feature extraction for information fusion
Guido, Rodrigo Capobianco [UNESP]
Deep networks
Entropy
Handcrafted feature extraction
Image synthesis
Information fusion
Restricted-vocabulary speech recognition
title_short A tutorial review on entropy-based handcrafted feature extraction for information fusion
title_full A tutorial review on entropy-based handcrafted feature extraction for information fusion
title_fullStr A tutorial review on entropy-based handcrafted feature extraction for information fusion
title_full_unstemmed A tutorial review on entropy-based handcrafted feature extraction for information fusion
title_sort A tutorial review on entropy-based handcrafted feature extraction for information fusion
author Guido, Rodrigo Capobianco [UNESP]
author_facet Guido, Rodrigo Capobianco [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Guido, Rodrigo Capobianco [UNESP]
dc.subject.por.fl_str_mv Deep networks
Entropy
Handcrafted feature extraction
Image synthesis
Information fusion
Restricted-vocabulary speech recognition
topic Deep networks
Entropy
Handcrafted feature extraction
Image synthesis
Information fusion
Restricted-vocabulary speech recognition
description Entropy (H) is the main subject of this article, concisely written to serve as a tutorial introducing two feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C++ source-codes and enriched with example applications on restricted-vocabulary speech recognition and image synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the outcome of a partially pre-tuned deep neural network architecture which fuses important information, bringing a cutting-edge point-of-view for both DSP and PR communities.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:34:03Z
2018-12-11T17:34:03Z
2018-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.inffus.2017.09.006
Information Fusion, v. 41, p. 161-175.
1566-2535
http://hdl.handle.net/11449/179166
10.1016/j.inffus.2017.09.006
2-s2.0-85029359276
2-s2.0-85029359276.pdf
6542086226808067
0000-0002-0924-8024
url http://dx.doi.org/10.1016/j.inffus.2017.09.006
http://hdl.handle.net/11449/179166
identifier_str_mv Information Fusion, v. 41, p. 161-175.
1566-2535
10.1016/j.inffus.2017.09.006
2-s2.0-85029359276
2-s2.0-85029359276.pdf
6542086226808067
0000-0002-0924-8024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Information Fusion
1,832
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 161-175
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129206468476928