A tutorial review on entropy-based handcrafted feature extraction for information fusion
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.inffus.2017.09.006 http://hdl.handle.net/11449/179166 |
Resumo: | Entropy (H) is the main subject of this article, concisely written to serve as a tutorial introducing two feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C++ source-codes and enriched with example applications on restricted-vocabulary speech recognition and image synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the outcome of a partially pre-tuned deep neural network architecture which fuses important information, bringing a cutting-edge point-of-view for both DSP and PR communities. |
id |
UNSP_01b4ce43dbf16658688e049e4b626f56 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/179166 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A tutorial review on entropy-based handcrafted feature extraction for information fusionDeep networksEntropyHandcrafted feature extractionImage synthesisInformation fusionRestricted-vocabulary speech recognitionEntropy (H) is the main subject of this article, concisely written to serve as a tutorial introducing two feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C++ source-codes and enriched with example applications on restricted-vocabulary speech recognition and image synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the outcome of a partially pre-tuned deep neural network architecture which fuses important information, bringing a cutting-edge point-of-view for both DSP and PR communities.Instituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista São Paulo State University, Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000, São José do Rio PretoInstituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista São Paulo State University, Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000, São José do Rio PretoUniversidade Estadual Paulista (Unesp)Guido, Rodrigo Capobianco [UNESP]2018-12-11T17:34:03Z2018-12-11T17:34:03Z2018-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article161-175application/pdfhttp://dx.doi.org/10.1016/j.inffus.2017.09.006Information Fusion, v. 41, p. 161-175.1566-2535http://hdl.handle.net/11449/17916610.1016/j.inffus.2017.09.0062-s2.0-850293592762-s2.0-85029359276.pdf65420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation Fusion1,832info:eu-repo/semantics/openAccess2023-12-16T06:18:19Zoai:repositorio.unesp.br:11449/179166Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:28:13.255683Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A tutorial review on entropy-based handcrafted feature extraction for information fusion |
title |
A tutorial review on entropy-based handcrafted feature extraction for information fusion |
spellingShingle |
A tutorial review on entropy-based handcrafted feature extraction for information fusion Guido, Rodrigo Capobianco [UNESP] Deep networks Entropy Handcrafted feature extraction Image synthesis Information fusion Restricted-vocabulary speech recognition |
title_short |
A tutorial review on entropy-based handcrafted feature extraction for information fusion |
title_full |
A tutorial review on entropy-based handcrafted feature extraction for information fusion |
title_fullStr |
A tutorial review on entropy-based handcrafted feature extraction for information fusion |
title_full_unstemmed |
A tutorial review on entropy-based handcrafted feature extraction for information fusion |
title_sort |
A tutorial review on entropy-based handcrafted feature extraction for information fusion |
author |
Guido, Rodrigo Capobianco [UNESP] |
author_facet |
Guido, Rodrigo Capobianco [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Guido, Rodrigo Capobianco [UNESP] |
dc.subject.por.fl_str_mv |
Deep networks Entropy Handcrafted feature extraction Image synthesis Information fusion Restricted-vocabulary speech recognition |
topic |
Deep networks Entropy Handcrafted feature extraction Image synthesis Information fusion Restricted-vocabulary speech recognition |
description |
Entropy (H) is the main subject of this article, concisely written to serve as a tutorial introducing two feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C++ source-codes and enriched with example applications on restricted-vocabulary speech recognition and image synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the outcome of a partially pre-tuned deep neural network architecture which fuses important information, bringing a cutting-edge point-of-view for both DSP and PR communities. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:34:03Z 2018-12-11T17:34:03Z 2018-05-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.inffus.2017.09.006 Information Fusion, v. 41, p. 161-175. 1566-2535 http://hdl.handle.net/11449/179166 10.1016/j.inffus.2017.09.006 2-s2.0-85029359276 2-s2.0-85029359276.pdf 6542086226808067 0000-0002-0924-8024 |
url |
http://dx.doi.org/10.1016/j.inffus.2017.09.006 http://hdl.handle.net/11449/179166 |
identifier_str_mv |
Information Fusion, v. 41, p. 161-175. 1566-2535 10.1016/j.inffus.2017.09.006 2-s2.0-85029359276 2-s2.0-85029359276.pdf 6542086226808067 0000-0002-0924-8024 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Information Fusion 1,832 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
161-175 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129206468476928 |