Account classification in online social networks with LBCA and wavelets

Detalhes bibliográficos
Autor(a) principal: Igawa, Rodrigo Augusto
Data de Publicação: 2016
Outros Autores: Barbon Jr, Sylvio, Paulo, Kátia Cristina Silva, Kido, Guilherme Sakaji, Guido, Rodrigo Capobianco [UNESP], Júnior, Mario Lemes Proença, Silva, Ivan Nunes da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.ins.2015.10.039
http://hdl.handle.net/11449/178391
Resumo: We developed a wavelet-based approach for account classification that detects textual dissemination by bots on an Online Social Network (OSN). Its main objective is to match account patterns with humans, cyborgs or robots, improving the existing algorithms that automatically detect frauds. With a computational cost suitable for OSNs, the proposed approach analyses the distribution of key terms. The descriptors, a wavelet-based feature vector for each user's account, work in conjunction with a new weighting scheme, called Lexicon Based Coefficient Attenuation (LBCA) and serve as inputs to one of the classifiers tested: Random Forests and Multilayer Perceptrons. Experiments were performed using a set of posts crawled during the 2014 FIFA World Cup, obtaining accuracies within the range from 94 to 100%.
id UNSP_02b9a03c8d641b89a0ea474d013f775b
oai_identifier_str oai:repositorio.unesp.br:11449/178391
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Account classification in online social networks with LBCA and waveletsAccount classificationMultilayer perceptronsOnline social networksRandom forestsWaveletsWe developed a wavelet-based approach for account classification that detects textual dissemination by bots on an Online Social Network (OSN). Its main objective is to match account patterns with humans, cyborgs or robots, improving the existing algorithms that automatically detect frauds. With a computational cost suitable for OSNs, the proposed approach analyses the distribution of key terms. The descriptors, a wavelet-based feature vector for each user's account, work in conjunction with a new weighting scheme, called Lexicon Based Coefficient Attenuation (LBCA) and serve as inputs to one of the classifiers tested: Random Forests and Multilayer Perceptrons. Experiments were performed using a set of posts crawled during the 2014 FIFA World Cup, obtaining accuracies within the range from 94 to 100%.Londrina State University, Rod. Celso Garcia Cid km 380, Londrina-PRInstituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000, São José do Rio Preto - SPDepartament of Electrical Engineering School of Engineering at São Carlos University of São Paulo, 13566-590, São Carlos, SPInstituto de Biociências Letras e Ciências Exatas Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000, São José do Rio Preto - SPUniversidade Estadual de Londrina (UEL)Universidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Igawa, Rodrigo AugustoBarbon Jr, SylvioPaulo, Kátia Cristina SilvaKido, Guilherme SakajiGuido, Rodrigo Capobianco [UNESP]Júnior, Mario Lemes ProençaSilva, Ivan Nunes da2018-12-11T17:30:03Z2018-12-11T17:30:03Z2016-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article72-83application/pdfhttp://dx.doi.org/10.1016/j.ins.2015.10.039Information Sciences, v. 332, p. 72-83.0020-0255http://hdl.handle.net/11449/17839110.1016/j.ins.2015.10.0392-s2.0-849940487442-s2.0-84994048744.pdf65420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation Sciences1,635info:eu-repo/semantics/openAccess2024-01-04T06:22:40Zoai:repositorio.unesp.br:11449/178391Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:04:45.456675Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Account classification in online social networks with LBCA and wavelets
title Account classification in online social networks with LBCA and wavelets
spellingShingle Account classification in online social networks with LBCA and wavelets
Igawa, Rodrigo Augusto
Account classification
Multilayer perceptrons
Online social networks
Random forests
Wavelets
title_short Account classification in online social networks with LBCA and wavelets
title_full Account classification in online social networks with LBCA and wavelets
title_fullStr Account classification in online social networks with LBCA and wavelets
title_full_unstemmed Account classification in online social networks with LBCA and wavelets
title_sort Account classification in online social networks with LBCA and wavelets
author Igawa, Rodrigo Augusto
author_facet Igawa, Rodrigo Augusto
Barbon Jr, Sylvio
Paulo, Kátia Cristina Silva
Kido, Guilherme Sakaji
Guido, Rodrigo Capobianco [UNESP]
Júnior, Mario Lemes Proença
Silva, Ivan Nunes da
author_role author
author2 Barbon Jr, Sylvio
Paulo, Kátia Cristina Silva
Kido, Guilherme Sakaji
Guido, Rodrigo Capobianco [UNESP]
Júnior, Mario Lemes Proença
Silva, Ivan Nunes da
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual de Londrina (UEL)
Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Igawa, Rodrigo Augusto
Barbon Jr, Sylvio
Paulo, Kátia Cristina Silva
Kido, Guilherme Sakaji
Guido, Rodrigo Capobianco [UNESP]
Júnior, Mario Lemes Proença
Silva, Ivan Nunes da
dc.subject.por.fl_str_mv Account classification
Multilayer perceptrons
Online social networks
Random forests
Wavelets
topic Account classification
Multilayer perceptrons
Online social networks
Random forests
Wavelets
description We developed a wavelet-based approach for account classification that detects textual dissemination by bots on an Online Social Network (OSN). Its main objective is to match account patterns with humans, cyborgs or robots, improving the existing algorithms that automatically detect frauds. With a computational cost suitable for OSNs, the proposed approach analyses the distribution of key terms. The descriptors, a wavelet-based feature vector for each user's account, work in conjunction with a new weighting scheme, called Lexicon Based Coefficient Attenuation (LBCA) and serve as inputs to one of the classifiers tested: Random Forests and Multilayer Perceptrons. Experiments were performed using a set of posts crawled during the 2014 FIFA World Cup, obtaining accuracies within the range from 94 to 100%.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-01
2018-12-11T17:30:03Z
2018-12-11T17:30:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.ins.2015.10.039
Information Sciences, v. 332, p. 72-83.
0020-0255
http://hdl.handle.net/11449/178391
10.1016/j.ins.2015.10.039
2-s2.0-84994048744
2-s2.0-84994048744.pdf
6542086226808067
0000-0002-0924-8024
url http://dx.doi.org/10.1016/j.ins.2015.10.039
http://hdl.handle.net/11449/178391
identifier_str_mv Information Sciences, v. 332, p. 72-83.
0020-0255
10.1016/j.ins.2015.10.039
2-s2.0-84994048744
2-s2.0-84994048744.pdf
6542086226808067
0000-0002-0924-8024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Information Sciences
1,635
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 72-83
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129390221983744