Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites

Detalhes bibliográficos
Autor(a) principal: Ornaghi, Heitor L.
Data de Publicação: 2020
Outros Autores: Almeida, José Humberto S., Monticeli, Francisco M. [UNESP], Neves, Roberta M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jcomc.2020.100051
http://hdl.handle.net/11449/206417
Resumo: Considering that structural composites are typically composed of off-axis plies, i.e. quasi-isotropic stacking sequence, their strength and stiffness are time-dependent due to the viscoelastic character of polymer matrices. This work consists of determining creep, recovery, and stress relaxation of carbon fiber-reinforced polymer (CFRP) composites. Long-term experimental analyses are conducted via dynamic mechanical analysis under several temperatures and stress levels. From the experimental observations, the changes in the relaxation mechanisms are predicted using Fancey's latch model. The rate of relaxation at different temperatures is also covered. Since at certain strain levels the viscoelastic behavior cannot be properly determined, the stress-relaxation is determined using the time-temperature superposition (TTS) principle, considering nine temperatures at three strain levels in order to cover the three main regions of the composite system (glassy, glass transition and rubbery regions). The models and experiments herein presented can be extended to any polymeric system.
id UNSP_044b94da6ce7bc350f9ecd88393fbaa6
oai_identifier_str oai:repositorio.unesp.br:11449/206417
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric compositesCreepGlass transitionStructure-property relationsConsidering that structural composites are typically composed of off-axis plies, i.e. quasi-isotropic stacking sequence, their strength and stiffness are time-dependent due to the viscoelastic character of polymer matrices. This work consists of determining creep, recovery, and stress relaxation of carbon fiber-reinforced polymer (CFRP) composites. Long-term experimental analyses are conducted via dynamic mechanical analysis under several temperatures and stress levels. From the experimental observations, the changes in the relaxation mechanisms are predicted using Fancey's latch model. The rate of relaxation at different temperatures is also covered. Since at certain strain levels the viscoelastic behavior cannot be properly determined, the stress-relaxation is determined using the time-temperature superposition (TTS) principle, considering nine temperatures at three strain levels in order to cover the three main regions of the composite system (glassy, glass transition and rubbery regions). The models and experiments herein presented can be extended to any polymeric system.PGMAT Caxias do Sul UniversityDepartment of Mechanical Engineering Aalto UniversityDepartment of Materials and Technology São Paulo State University (Unesp)PPGE3M Federal University of Rio Grande do SulDepartment of Materials and Technology São Paulo State University (Unesp)Caxias do Sul UniversityAalto UniversityUniversidade Estadual Paulista (Unesp)Federal University of Rio Grande do SulOrnaghi, Heitor L.Almeida, José Humberto S.Monticeli, Francisco M. [UNESP]Neves, Roberta M.2021-06-25T10:31:45Z2021-06-25T10:31:45Z2020-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.jcomc.2020.100051Composites Part C: Open Access, v. 3.2666-6820http://hdl.handle.net/11449/20641710.1016/j.jcomc.2020.1000512-s2.0-85106968955Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComposites Part C: Open Accessinfo:eu-repo/semantics/openAccess2021-10-23T04:24:33Zoai:repositorio.unesp.br:11449/206417Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:34:29.090314Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites
title Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites
spellingShingle Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites
Ornaghi, Heitor L.
Creep
Glass transition
Structure-property relations
title_short Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites
title_full Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites
title_fullStr Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites
title_full_unstemmed Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites
title_sort Stress relaxation, creep, and recovery of carbon fiber non-crimp fabric composites
author Ornaghi, Heitor L.
author_facet Ornaghi, Heitor L.
Almeida, José Humberto S.
Monticeli, Francisco M. [UNESP]
Neves, Roberta M.
author_role author
author2 Almeida, José Humberto S.
Monticeli, Francisco M. [UNESP]
Neves, Roberta M.
author2_role author
author
author
dc.contributor.none.fl_str_mv Caxias do Sul University
Aalto University
Universidade Estadual Paulista (Unesp)
Federal University of Rio Grande do Sul
dc.contributor.author.fl_str_mv Ornaghi, Heitor L.
Almeida, José Humberto S.
Monticeli, Francisco M. [UNESP]
Neves, Roberta M.
dc.subject.por.fl_str_mv Creep
Glass transition
Structure-property relations
topic Creep
Glass transition
Structure-property relations
description Considering that structural composites are typically composed of off-axis plies, i.e. quasi-isotropic stacking sequence, their strength and stiffness are time-dependent due to the viscoelastic character of polymer matrices. This work consists of determining creep, recovery, and stress relaxation of carbon fiber-reinforced polymer (CFRP) composites. Long-term experimental analyses are conducted via dynamic mechanical analysis under several temperatures and stress levels. From the experimental observations, the changes in the relaxation mechanisms are predicted using Fancey's latch model. The rate of relaxation at different temperatures is also covered. Since at certain strain levels the viscoelastic behavior cannot be properly determined, the stress-relaxation is determined using the time-temperature superposition (TTS) principle, considering nine temperatures at three strain levels in order to cover the three main regions of the composite system (glassy, glass transition and rubbery regions). The models and experiments herein presented can be extended to any polymeric system.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-01
2021-06-25T10:31:45Z
2021-06-25T10:31:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jcomc.2020.100051
Composites Part C: Open Access, v. 3.
2666-6820
http://hdl.handle.net/11449/206417
10.1016/j.jcomc.2020.100051
2-s2.0-85106968955
url http://dx.doi.org/10.1016/j.jcomc.2020.100051
http://hdl.handle.net/11449/206417
identifier_str_mv Composites Part C: Open Access, v. 3.
2666-6820
10.1016/j.jcomc.2020.100051
2-s2.0-85106968955
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Composites Part C: Open Access
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128672263045120