Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1117/12.2506018 http://hdl.handle.net/11449/190455 |
Resumo: | We developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. The 3D meshes had been previously classified in 6 groups by 2 expert clinicians. We improved the robustness of the training data using data augmentation, SMOTE, to alleviate over-fitting and to balance classes. We combined geometrical features and a shape descriptor, heat kernel signature, to describe every shape. The results were compared to nine different supervised machine learning algorithms. The deep learning neural network was the most accurate for classification of TMJ OA. In conclusion, SVA is a 3D Slicer extension that classifies pathology of the temporomandibular joint osteoarthritis cases based on 3D morphology. |
id |
UNSP_04e415f7f009da032373e7ec1868cb00 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/190455 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritisClassificationDeep LearningNeural NetworkOsteoarthritisTemporomandibular Joint DisordersWe developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. The 3D meshes had been previously classified in 6 groups by 2 expert clinicians. We improved the robustness of the training data using data augmentation, SMOTE, to alleviate over-fitting and to balance classes. We combined geometrical features and a shape descriptor, heat kernel signature, to describe every shape. The results were compared to nine different supervised machine learning algorithms. The deep learning neural network was the most accurate for classification of TMJ OA. In conclusion, SVA is a 3D Slicer extension that classifies pathology of the temporomandibular joint osteoarthritis cases based on 3D morphology.Dept. of Orthodontics and Pediatric Dentistry University of Michigan, 1011 N University AveKitware Inc., 101 East Weaver StreetDept. of Statistics and Operations Research University of North Carolina at Chapel Hill Hanes Hall Campus Box 3260Dept. of Pediatric Dentistry São Paulo State University (Unesp) School of Dentistry, 1680 Humaita StDept. of Pediatric Dentistry São Paulo State University (Unesp) School of Dentistry, 1680 Humaita StUniversity of MichiganInc.Hanes HallUniversidade Estadual Paulista (Unesp)Ribera, Nina TubauDe Dumast, PriscilleYatabe, MariliaRuellas, AntonioIoshida, MarcosPaniagua, BeatrizStyner, MartinGonçalves, João Roberto [UNESP]Bianchi, Jonas [UNESP]Cevidanes, LuciaPrieto, Juan-Carlos2019-10-06T17:13:47Z2019-10-06T17:13:47Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1117/12.2506018Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 10950.1605-7422http://hdl.handle.net/11449/19045510.1117/12.25060182-s2.0-85068192586Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProgress in Biomedical Optics and Imaging - Proceedings of SPIEinfo:eu-repo/semantics/openAccess2024-09-26T14:22:32Zoai:repositorio.unesp.br:11449/190455Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-09-26T14:22:32Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis |
title |
Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis |
spellingShingle |
Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis Ribera, Nina Tubau Classification Deep Learning Neural Network Osteoarthritis Temporomandibular Joint Disorders |
title_short |
Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis |
title_full |
Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis |
title_fullStr |
Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis |
title_full_unstemmed |
Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis |
title_sort |
Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis |
author |
Ribera, Nina Tubau |
author_facet |
Ribera, Nina Tubau De Dumast, Priscille Yatabe, Marilia Ruellas, Antonio Ioshida, Marcos Paniagua, Beatriz Styner, Martin Gonçalves, João Roberto [UNESP] Bianchi, Jonas [UNESP] Cevidanes, Lucia Prieto, Juan-Carlos |
author_role |
author |
author2 |
De Dumast, Priscille Yatabe, Marilia Ruellas, Antonio Ioshida, Marcos Paniagua, Beatriz Styner, Martin Gonçalves, João Roberto [UNESP] Bianchi, Jonas [UNESP] Cevidanes, Lucia Prieto, Juan-Carlos |
author2_role |
author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
University of Michigan Inc. Hanes Hall Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Ribera, Nina Tubau De Dumast, Priscille Yatabe, Marilia Ruellas, Antonio Ioshida, Marcos Paniagua, Beatriz Styner, Martin Gonçalves, João Roberto [UNESP] Bianchi, Jonas [UNESP] Cevidanes, Lucia Prieto, Juan-Carlos |
dc.subject.por.fl_str_mv |
Classification Deep Learning Neural Network Osteoarthritis Temporomandibular Joint Disorders |
topic |
Classification Deep Learning Neural Network Osteoarthritis Temporomandibular Joint Disorders |
description |
We developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. The 3D meshes had been previously classified in 6 groups by 2 expert clinicians. We improved the robustness of the training data using data augmentation, SMOTE, to alleviate over-fitting and to balance classes. We combined geometrical features and a shape descriptor, heat kernel signature, to describe every shape. The results were compared to nine different supervised machine learning algorithms. The deep learning neural network was the most accurate for classification of TMJ OA. In conclusion, SVA is a 3D Slicer extension that classifies pathology of the temporomandibular joint osteoarthritis cases based on 3D morphology. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T17:13:47Z 2019-10-06T17:13:47Z 2019-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1117/12.2506018 Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 10950. 1605-7422 http://hdl.handle.net/11449/190455 10.1117/12.2506018 2-s2.0-85068192586 |
url |
http://dx.doi.org/10.1117/12.2506018 http://hdl.handle.net/11449/190455 |
identifier_str_mv |
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 10950. 1605-7422 10.1117/12.2506018 2-s2.0-85068192586 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1813546407640956928 |