Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis

Detalhes bibliográficos
Autor(a) principal: Ribera, Nina Tubau
Data de Publicação: 2019
Outros Autores: De Dumast, Priscille, Yatabe, Marilia, Ruellas, Antonio, Ioshida, Marcos, Paniagua, Beatriz, Styner, Martin, Gonçalves, João Roberto [UNESP], Bianchi, Jonas [UNESP], Cevidanes, Lucia, Prieto, Juan-Carlos
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1117/12.2506018
http://hdl.handle.net/11449/190455
Resumo: We developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. The 3D meshes had been previously classified in 6 groups by 2 expert clinicians. We improved the robustness of the training data using data augmentation, SMOTE, to alleviate over-fitting and to balance classes. We combined geometrical features and a shape descriptor, heat kernel signature, to describe every shape. The results were compared to nine different supervised machine learning algorithms. The deep learning neural network was the most accurate for classification of TMJ OA. In conclusion, SVA is a 3D Slicer extension that classifies pathology of the temporomandibular joint osteoarthritis cases based on 3D morphology.
id UNSP_04e415f7f009da032373e7ec1868cb00
oai_identifier_str oai:repositorio.unesp.br:11449/190455
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritisClassificationDeep LearningNeural NetworkOsteoarthritisTemporomandibular Joint DisordersWe developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. The 3D meshes had been previously classified in 6 groups by 2 expert clinicians. We improved the robustness of the training data using data augmentation, SMOTE, to alleviate over-fitting and to balance classes. We combined geometrical features and a shape descriptor, heat kernel signature, to describe every shape. The results were compared to nine different supervised machine learning algorithms. The deep learning neural network was the most accurate for classification of TMJ OA. In conclusion, SVA is a 3D Slicer extension that classifies pathology of the temporomandibular joint osteoarthritis cases based on 3D morphology.Dept. of Orthodontics and Pediatric Dentistry University of Michigan, 1011 N University AveKitware Inc., 101 East Weaver StreetDept. of Statistics and Operations Research University of North Carolina at Chapel Hill Hanes Hall Campus Box 3260Dept. of Pediatric Dentistry São Paulo State University (Unesp) School of Dentistry, 1680 Humaita StDept. of Pediatric Dentistry São Paulo State University (Unesp) School of Dentistry, 1680 Humaita StUniversity of MichiganInc.Hanes HallUniversidade Estadual Paulista (Unesp)Ribera, Nina TubauDe Dumast, PriscilleYatabe, MariliaRuellas, AntonioIoshida, MarcosPaniagua, BeatrizStyner, MartinGonçalves, João Roberto [UNESP]Bianchi, Jonas [UNESP]Cevidanes, LuciaPrieto, Juan-Carlos2019-10-06T17:13:47Z2019-10-06T17:13:47Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1117/12.2506018Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 10950.1605-7422http://hdl.handle.net/11449/19045510.1117/12.25060182-s2.0-85068192586Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProgress in Biomedical Optics and Imaging - Proceedings of SPIEinfo:eu-repo/semantics/openAccess2024-09-26T14:22:32Zoai:repositorio.unesp.br:11449/190455Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-09-26T14:22:32Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis
title Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis
spellingShingle Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis
Ribera, Nina Tubau
Classification
Deep Learning
Neural Network
Osteoarthritis
Temporomandibular Joint Disorders
title_short Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis
title_full Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis
title_fullStr Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis
title_full_unstemmed Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis
title_sort Shape variation analyzer: A classifier for temporomandibular joint damaged by osteoarthritis
author Ribera, Nina Tubau
author_facet Ribera, Nina Tubau
De Dumast, Priscille
Yatabe, Marilia
Ruellas, Antonio
Ioshida, Marcos
Paniagua, Beatriz
Styner, Martin
Gonçalves, João Roberto [UNESP]
Bianchi, Jonas [UNESP]
Cevidanes, Lucia
Prieto, Juan-Carlos
author_role author
author2 De Dumast, Priscille
Yatabe, Marilia
Ruellas, Antonio
Ioshida, Marcos
Paniagua, Beatriz
Styner, Martin
Gonçalves, João Roberto [UNESP]
Bianchi, Jonas [UNESP]
Cevidanes, Lucia
Prieto, Juan-Carlos
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv University of Michigan
Inc.
Hanes Hall
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ribera, Nina Tubau
De Dumast, Priscille
Yatabe, Marilia
Ruellas, Antonio
Ioshida, Marcos
Paniagua, Beatriz
Styner, Martin
Gonçalves, João Roberto [UNESP]
Bianchi, Jonas [UNESP]
Cevidanes, Lucia
Prieto, Juan-Carlos
dc.subject.por.fl_str_mv Classification
Deep Learning
Neural Network
Osteoarthritis
Temporomandibular Joint Disorders
topic Classification
Deep Learning
Neural Network
Osteoarthritis
Temporomandibular Joint Disorders
description We developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. The 3D meshes had been previously classified in 6 groups by 2 expert clinicians. We improved the robustness of the training data using data augmentation, SMOTE, to alleviate over-fitting and to balance classes. We combined geometrical features and a shape descriptor, heat kernel signature, to describe every shape. The results were compared to nine different supervised machine learning algorithms. The deep learning neural network was the most accurate for classification of TMJ OA. In conclusion, SVA is a 3D Slicer extension that classifies pathology of the temporomandibular joint osteoarthritis cases based on 3D morphology.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T17:13:47Z
2019-10-06T17:13:47Z
2019-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1117/12.2506018
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 10950.
1605-7422
http://hdl.handle.net/11449/190455
10.1117/12.2506018
2-s2.0-85068192586
url http://dx.doi.org/10.1117/12.2506018
http://hdl.handle.net/11449/190455
identifier_str_mv Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 10950.
1605-7422
10.1117/12.2506018
2-s2.0-85068192586
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Progress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1813546407640956928