A class of orthogonal functions given by a three term recurrence formula
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1090/mcom3041 http://hdl.handle.net/11449/172737 |
Resumo: | We present a class of functions satisfying a certain orthogonality property for which there also exists a three term recurrence formula. This class of functions, which can be considered as an extension to the class of symmetric orthogonal polynomials on [-1, 1], has a complete connection to the orthogonal polynomials on the unit circle. Interpolatory properties, quadrature rules and other properties based on the zeros of these functions are also considered. |
id |
UNSP_06af9d2dd0c60a8addc17477a388102e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/172737 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A class of orthogonal functions given by a three term recurrence formulaOrthogonal functionsOrthogonal polynomials on the unit circleQuadrature rulesSelf-inversive polynomialsThree term recurrenceWe present a class of functions satisfying a certain orthogonality property for which there also exists a three term recurrence formula. This class of functions, which can be considered as an extension to the class of symmetric orthogonal polynomials on [-1, 1], has a complete connection to the orthogonal polynomials on the unit circle. Interpolatory properties, quadrature rules and other properties based on the zeros of these functions are also considered.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Matemática Aplicada IBILCE UNESP - Universidade Estadual PaulistaDepartment of Applied Mathematics School of Mathematics University of St. AndrewsDepartamento de Matemática Aplicada Universidad de GranadaDepartamento de Matemática Aplicada IBILCE UNESP - Universidade Estadual PaulistaFAPESP: 2009/13832-9Universidade Estadual Paulista (Unesp)University of St. AndrewsUniversidad de GranadaBracciali, C. F. [UNESP]McCabe, J. H.Pérez, T. E.Sri Ranga, A.2018-12-11T17:01:58Z2018-12-11T17:01:58Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1837-1859application/pdfhttp://dx.doi.org/10.1090/mcom3041Mathematics of Computation, v. 85, n. 300, p. 1837-1859, 2016.0025-5718http://hdl.handle.net/11449/17273710.1090/mcom30412-s2.0-849617988872-s2.0-84961798887.pdf83003224526224670000-0002-6823-4204Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMathematics of Computation1,939info:eu-repo/semantics/openAccess2023-11-11T06:10:44Zoai:repositorio.unesp.br:11449/172737Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:22:29.759517Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A class of orthogonal functions given by a three term recurrence formula |
title |
A class of orthogonal functions given by a three term recurrence formula |
spellingShingle |
A class of orthogonal functions given by a three term recurrence formula Bracciali, C. F. [UNESP] Orthogonal functions Orthogonal polynomials on the unit circle Quadrature rules Self-inversive polynomials Three term recurrence |
title_short |
A class of orthogonal functions given by a three term recurrence formula |
title_full |
A class of orthogonal functions given by a three term recurrence formula |
title_fullStr |
A class of orthogonal functions given by a three term recurrence formula |
title_full_unstemmed |
A class of orthogonal functions given by a three term recurrence formula |
title_sort |
A class of orthogonal functions given by a three term recurrence formula |
author |
Bracciali, C. F. [UNESP] |
author_facet |
Bracciali, C. F. [UNESP] McCabe, J. H. Pérez, T. E. Sri Ranga, A. |
author_role |
author |
author2 |
McCabe, J. H. Pérez, T. E. Sri Ranga, A. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) University of St. Andrews Universidad de Granada |
dc.contributor.author.fl_str_mv |
Bracciali, C. F. [UNESP] McCabe, J. H. Pérez, T. E. Sri Ranga, A. |
dc.subject.por.fl_str_mv |
Orthogonal functions Orthogonal polynomials on the unit circle Quadrature rules Self-inversive polynomials Three term recurrence |
topic |
Orthogonal functions Orthogonal polynomials on the unit circle Quadrature rules Self-inversive polynomials Three term recurrence |
description |
We present a class of functions satisfying a certain orthogonality property for which there also exists a three term recurrence formula. This class of functions, which can be considered as an extension to the class of symmetric orthogonal polynomials on [-1, 1], has a complete connection to the orthogonal polynomials on the unit circle. Interpolatory properties, quadrature rules and other properties based on the zeros of these functions are also considered. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-12-11T17:01:58Z 2018-12-11T17:01:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1090/mcom3041 Mathematics of Computation, v. 85, n. 300, p. 1837-1859, 2016. 0025-5718 http://hdl.handle.net/11449/172737 10.1090/mcom3041 2-s2.0-84961798887 2-s2.0-84961798887.pdf 8300322452622467 0000-0002-6823-4204 |
url |
http://dx.doi.org/10.1090/mcom3041 http://hdl.handle.net/11449/172737 |
identifier_str_mv |
Mathematics of Computation, v. 85, n. 300, p. 1837-1859, 2016. 0025-5718 10.1090/mcom3041 2-s2.0-84961798887 2-s2.0-84961798887.pdf 8300322452622467 0000-0002-6823-4204 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Mathematics of Computation 1,939 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1837-1859 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128800051953664 |