Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature

Detalhes bibliográficos
Autor(a) principal: Santos, Leandra P.
Data de Publicação: 2023
Outros Autores: Lermen, Diana, Yoshimura, Rafael Galiza, da Silva, Bruno Leuzinger, Galembeck, André, Burgo, Thiago A. L. [UNESP], Galembeck, Fernando
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acs.langmuir.3c00186
http://hdl.handle.net/11449/248748
Resumo: Hygroelectric cells deliver hydrogen, hydrogen peroxide, and electric current simultaneously at room temperature from liquid water or vapor. Different cell arrangements allowed the electrical measurements and the detection and measurement of the reaction products by two methods each. Thermodynamic analysis shows that water dehydrogenation is a non-spontaneous reaction under standard conditions, but it can occur within an open, non-electroneutral system, thus supporting the experimental results. That is a new example of chemical reactivity modification in charged interfaces, analogous to the hydrogen peroxide formation in charged aqueous aerosol droplets. Extension of the experimental methods and the thermodynamic analysis used in this work may allow the prediction of interesting new chemical reactions that are otherwise unexpected. On the other hand, this adds a new facet to the complex behavior of interfaces. Hygroelectric cells shown in this work are built from commodity materials, using standard laboratory or industrial processes that are easily scaled up. Thus, hygroelectricity may eventually become a source of energy and valuable chemicals.
id UNSP_07529be5c81ba0ac96f35eb97dfb9c14
oai_identifier_str oai:repositorio.unesp.br:11449/248748
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room TemperatureHygroelectric cells deliver hydrogen, hydrogen peroxide, and electric current simultaneously at room temperature from liquid water or vapor. Different cell arrangements allowed the electrical measurements and the detection and measurement of the reaction products by two methods each. Thermodynamic analysis shows that water dehydrogenation is a non-spontaneous reaction under standard conditions, but it can occur within an open, non-electroneutral system, thus supporting the experimental results. That is a new example of chemical reactivity modification in charged interfaces, analogous to the hydrogen peroxide formation in charged aqueous aerosol droplets. Extension of the experimental methods and the thermodynamic analysis used in this work may allow the prediction of interesting new chemical reactions that are otherwise unexpected. On the other hand, this adds a new facet to the complex behavior of interfaces. Hygroelectric cells shown in this work are built from commodity materials, using standard laboratory or industrial processes that are easily scaled up. Thus, hygroelectricity may eventually become a source of energy and valuable chemicals.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Galembetech Consultores e Tecnologia Ltda.University of Campinas Institute of ChemistryDepartment of Fundamental Chemistry Federal University of PernambucoDepartment of Chemistry and Environmental Sciences Ibilce São Paulo State University (Unesp)Department of Chemistry and Environmental Sciences Ibilce São Paulo State University (Unesp)Galembetech Consultores e Tecnologia Ltda.Universidade Estadual de Campinas (UNICAMP)Universidade Federal de Pernambuco (UFPE)Universidade Estadual Paulista (UNESP)Santos, Leandra P.Lermen, DianaYoshimura, Rafael Galizada Silva, Bruno LeuzingerGalembeck, AndréBurgo, Thiago A. L. [UNESP]Galembeck, Fernando2023-07-29T13:52:34Z2023-07-29T13:52:34Z2023-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article5840-5850http://dx.doi.org/10.1021/acs.langmuir.3c00186Langmuir, v. 39, n. 16, p. 5840-5850, 2023.1520-58270743-7463http://hdl.handle.net/11449/24874810.1021/acs.langmuir.3c001862-s2.0-85153803306Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLangmuirinfo:eu-repo/semantics/openAccess2023-07-29T13:52:34Zoai:repositorio.unesp.br:11449/248748Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:22:38.322532Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature
title Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature
spellingShingle Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature
Santos, Leandra P.
title_short Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature
title_full Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature
title_fullStr Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature
title_full_unstemmed Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature
title_sort Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature
author Santos, Leandra P.
author_facet Santos, Leandra P.
Lermen, Diana
Yoshimura, Rafael Galiza
da Silva, Bruno Leuzinger
Galembeck, André
Burgo, Thiago A. L. [UNESP]
Galembeck, Fernando
author_role author
author2 Lermen, Diana
Yoshimura, Rafael Galiza
da Silva, Bruno Leuzinger
Galembeck, André
Burgo, Thiago A. L. [UNESP]
Galembeck, Fernando
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Galembetech Consultores e Tecnologia Ltda.
Universidade Estadual de Campinas (UNICAMP)
Universidade Federal de Pernambuco (UFPE)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Santos, Leandra P.
Lermen, Diana
Yoshimura, Rafael Galiza
da Silva, Bruno Leuzinger
Galembeck, André
Burgo, Thiago A. L. [UNESP]
Galembeck, Fernando
description Hygroelectric cells deliver hydrogen, hydrogen peroxide, and electric current simultaneously at room temperature from liquid water or vapor. Different cell arrangements allowed the electrical measurements and the detection and measurement of the reaction products by two methods each. Thermodynamic analysis shows that water dehydrogenation is a non-spontaneous reaction under standard conditions, but it can occur within an open, non-electroneutral system, thus supporting the experimental results. That is a new example of chemical reactivity modification in charged interfaces, analogous to the hydrogen peroxide formation in charged aqueous aerosol droplets. Extension of the experimental methods and the thermodynamic analysis used in this work may allow the prediction of interesting new chemical reactions that are otherwise unexpected. On the other hand, this adds a new facet to the complex behavior of interfaces. Hygroelectric cells shown in this work are built from commodity materials, using standard laboratory or industrial processes that are easily scaled up. Thus, hygroelectricity may eventually become a source of energy and valuable chemicals.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:52:34Z
2023-07-29T13:52:34Z
2023-04-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acs.langmuir.3c00186
Langmuir, v. 39, n. 16, p. 5840-5850, 2023.
1520-5827
0743-7463
http://hdl.handle.net/11449/248748
10.1021/acs.langmuir.3c00186
2-s2.0-85153803306
url http://dx.doi.org/10.1021/acs.langmuir.3c00186
http://hdl.handle.net/11449/248748
identifier_str_mv Langmuir, v. 39, n. 16, p. 5840-5850, 2023.
1520-5827
0743-7463
10.1021/acs.langmuir.3c00186
2-s2.0-85153803306
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Langmuir
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 5840-5850
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128640306642944