Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers

Detalhes bibliográficos
Autor(a) principal: Sábio, Rafael Miguel
Data de Publicação: 2019
Outros Autores: da Silva, Robson Rosa, Sargentelli, Vagner [UNESP], Gutierrez, Junkal, Tercjak, Agnieszka, Ribeiro, Sidney José Lima [UNESP], da Silva Barud, Hernane
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10854-019-02066-6
http://hdl.handle.net/11449/189727
Resumo: Natural polymers templates capable to maneuver the growth and spatial distribution of functional nanoparticles have been furthering the development of a new generation of sustainable and versatile materials. Pure cellulose nanofibrils, biosynthesized by bacteria, naturally deliver a 3D interconnected network of lightweight, foldable and sustainable matrices. Cellulose membrane is an exceptional biodegradable and biocompatible and high mechanical strength substrate with a native fibrous structure that can be easily applied as a structure-directing host to produce nanosized materials with optical, electrical or magnetic properties. In this work, we investigated the preparation of magnetic membranes by using bacterial cellulose nanofibers to control the growth of molecule-based magnetic nanoparticles such as Prussian Blue analogs. Magnetic Cobalt–Prussian Blue (CoHCEFe) nanoparticles were synthesized in situ by hydrothermal method through a diffusion-limited precipitation process onto a bacterial cellulose nanofiber network. Scanning electron microscopy and atomic force microscopy clearly unveiled a homogeneous distribution of immobilized COHCEFe crystalline nanoparticles whose size ranges from 94 to 70 nm as a function of nanoparticle content (up 28 wt%). Magnetic force microscopy showed that these nanometric COHCEFe crystalline nanoparticles well dispersed in BC fibers network respond to the magnetic field applied to the MFM-tip. This nano/nano association approach can provide functionally advanced materials for application in catalysis, adsorption of radionuclides, energy generation, data storage, biosensing, optical and magnetic devices.
id UNSP_09b04333b8fd4975210fdaea2ed26eb9
oai_identifier_str oai:repositorio.unesp.br:11449/189727
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibersNatural polymers templates capable to maneuver the growth and spatial distribution of functional nanoparticles have been furthering the development of a new generation of sustainable and versatile materials. Pure cellulose nanofibrils, biosynthesized by bacteria, naturally deliver a 3D interconnected network of lightweight, foldable and sustainable matrices. Cellulose membrane is an exceptional biodegradable and biocompatible and high mechanical strength substrate with a native fibrous structure that can be easily applied as a structure-directing host to produce nanosized materials with optical, electrical or magnetic properties. In this work, we investigated the preparation of magnetic membranes by using bacterial cellulose nanofibers to control the growth of molecule-based magnetic nanoparticles such as Prussian Blue analogs. Magnetic Cobalt–Prussian Blue (CoHCEFe) nanoparticles were synthesized in situ by hydrothermal method through a diffusion-limited precipitation process onto a bacterial cellulose nanofiber network. Scanning electron microscopy and atomic force microscopy clearly unveiled a homogeneous distribution of immobilized COHCEFe crystalline nanoparticles whose size ranges from 94 to 70 nm as a function of nanoparticle content (up 28 wt%). Magnetic force microscopy showed that these nanometric COHCEFe crystalline nanoparticles well dispersed in BC fibers network respond to the magnetic field applied to the MFM-tip. This nano/nano association approach can provide functionally advanced materials for application in catalysis, adsorption of radionuclides, energy generation, data storage, biosensing, optical and magnetic devices.Laboratório de Biopolímeros e Biomateriais (BIOPOLMAT) Universidade de AraraquaraSão Carlos Institute of Physics University of São PauloInstitute of Chemistry São Paulo State University UNESPGroup `Materials + Technologies´ (GMT) Department of Chemical and Environmental Engineering Faculty of Engineering Gipuzkoa University of the Basque Country (UPV/EHU), Plaza Europa 1Faculty of Engineering Vitoria-Gasteiz University of the Basque Country (UPV/EHU), C/Nieves Cano 12Institute of Chemistry São Paulo State University UNESPUniversidade de AraraquaraUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)University of the Basque Country (UPV/EHU)Sábio, Rafael Miguelda Silva, Robson RosaSargentelli, Vagner [UNESP]Gutierrez, JunkalTercjak, AgnieszkaRibeiro, Sidney José Lima [UNESP]da Silva Barud, Hernane2019-10-06T16:50:15Z2019-10-06T16:50:15Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s10854-019-02066-6Journal of Materials Science: Materials in Electronics.1573-482X0957-4522http://hdl.handle.net/11449/18972710.1007/s10854-019-02066-62-s2.0-85071421494Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Materials Science: Materials in Electronicsinfo:eu-repo/semantics/openAccess2021-10-22T21:09:51Zoai:repositorio.unesp.br:11449/189727Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:37:04.835868Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers
title Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers
spellingShingle Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers
Sábio, Rafael Miguel
title_short Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers
title_full Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers
title_fullStr Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers
title_full_unstemmed Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers
title_sort Growth of magnetic cobalt hexacyanoferrate nanoparticles onto bacterial cellulose nanofibers
author Sábio, Rafael Miguel
author_facet Sábio, Rafael Miguel
da Silva, Robson Rosa
Sargentelli, Vagner [UNESP]
Gutierrez, Junkal
Tercjak, Agnieszka
Ribeiro, Sidney José Lima [UNESP]
da Silva Barud, Hernane
author_role author
author2 da Silva, Robson Rosa
Sargentelli, Vagner [UNESP]
Gutierrez, Junkal
Tercjak, Agnieszka
Ribeiro, Sidney José Lima [UNESP]
da Silva Barud, Hernane
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de Araraquara
Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
University of the Basque Country (UPV/EHU)
dc.contributor.author.fl_str_mv Sábio, Rafael Miguel
da Silva, Robson Rosa
Sargentelli, Vagner [UNESP]
Gutierrez, Junkal
Tercjak, Agnieszka
Ribeiro, Sidney José Lima [UNESP]
da Silva Barud, Hernane
description Natural polymers templates capable to maneuver the growth and spatial distribution of functional nanoparticles have been furthering the development of a new generation of sustainable and versatile materials. Pure cellulose nanofibrils, biosynthesized by bacteria, naturally deliver a 3D interconnected network of lightweight, foldable and sustainable matrices. Cellulose membrane is an exceptional biodegradable and biocompatible and high mechanical strength substrate with a native fibrous structure that can be easily applied as a structure-directing host to produce nanosized materials with optical, electrical or magnetic properties. In this work, we investigated the preparation of magnetic membranes by using bacterial cellulose nanofibers to control the growth of molecule-based magnetic nanoparticles such as Prussian Blue analogs. Magnetic Cobalt–Prussian Blue (CoHCEFe) nanoparticles were synthesized in situ by hydrothermal method through a diffusion-limited precipitation process onto a bacterial cellulose nanofiber network. Scanning electron microscopy and atomic force microscopy clearly unveiled a homogeneous distribution of immobilized COHCEFe crystalline nanoparticles whose size ranges from 94 to 70 nm as a function of nanoparticle content (up 28 wt%). Magnetic force microscopy showed that these nanometric COHCEFe crystalline nanoparticles well dispersed in BC fibers network respond to the magnetic field applied to the MFM-tip. This nano/nano association approach can provide functionally advanced materials for application in catalysis, adsorption of radionuclides, energy generation, data storage, biosensing, optical and magnetic devices.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T16:50:15Z
2019-10-06T16:50:15Z
2019-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10854-019-02066-6
Journal of Materials Science: Materials in Electronics.
1573-482X
0957-4522
http://hdl.handle.net/11449/189727
10.1007/s10854-019-02066-6
2-s2.0-85071421494
url http://dx.doi.org/10.1007/s10854-019-02066-6
http://hdl.handle.net/11449/189727
identifier_str_mv Journal of Materials Science: Materials in Electronics.
1573-482X
0957-4522
10.1007/s10854-019-02066-6
2-s2.0-85071421494
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Materials Science: Materials in Electronics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129341632020480