An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges

Detalhes bibliográficos
Autor(a) principal: Alves, Adson Nogueira [UNESP]
Data de Publicação: 2020
Outros Autores: Ferreira, Murillo Augusto S. [UNESP], Colombini, Esther Luna, Simoes, Alexandre da Silva [UNESP], Goncalves, LMG, Drews, PLJ, DaSilva, BMF, DosSantos, D. H., DeMelo, JCP, Curvelo, CDF, Fabro, J. A.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/245458
Resumo: Machine learning methods have been widely employed in robotics over the years, and recent developments in machine learning have completely re-shaped problem-solving in the area. Indeed, if we consider multi-objective planning, these models' optimization and learning capabilities can derive more robust strategies. Inspired by the species natural selection mechanism, Evolutionary Algorithms (EA) are among the best known computational approaches available for this purpose. In this scenario, this work proposed an EA model developed to find the best travel trajectory for a quadcopter in the Desafio Petrobras challenge. In the challenge, a set of landing platforms that the robot has to visit are displaced in the 3D-space. To find the best trajectory possible, we optimize an EA over a low-level control that can take the quadcopter from point A to B. We vary our fitness function to support more complex decisions. The software-in-the-loop technique was applied for a simulated quadrotor in the Coppelia simulated environment. The proposed approach has shown the capability to generate short trajectories while considering variables like UAV dynamics and energy consumption.
id UNSP_0a363666911ce8c56293c19f79b49cf8
oai_identifier_str oai:repositorio.unesp.br:11449/245458
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An evolutionary algorithm for quadcopter trajectory optimization in aerial challengesMachine learning methods have been widely employed in robotics over the years, and recent developments in machine learning have completely re-shaped problem-solving in the area. Indeed, if we consider multi-objective planning, these models' optimization and learning capabilities can derive more robust strategies. Inspired by the species natural selection mechanism, Evolutionary Algorithms (EA) are among the best known computational approaches available for this purpose. In this scenario, this work proposed an EA model developed to find the best travel trajectory for a quadcopter in the Desafio Petrobras challenge. In the challenge, a set of landing platforms that the robot has to visit are displaced in the 3D-space. To find the best trajectory possible, we optimize an EA over a low-level control that can take the quadcopter from point A to B. We vary our fitness function to support more complex decisions. The software-in-the-loop technique was applied for a simulated quadrotor in the Coppelia simulated environment. The proposed approach has shown the capability to generate short trajectories while considering variables like UAV dynamics and energy consumption.Coordena��o de Aperfei�oamento de Pessoal de N�vel Superior (CAPES)Electrical Engineering Graduate Program (PGEE) at the Institute of Science and Technology (ICT) of SorocabaAutomation and Integrated systems Group (GASI) at UnespSao Paulo State Univ Unesp, Grad Program Elect Engn PGEE, Sorocaba, SP, BrazilUniv Campinas Unicamp, Inst Comp IC, Campinas, SP, BrazilSao Paulo State Univ Unesp, Dept Control & Automat Engn DECA, Inst Sci & Technol ICT, Sorocaba, SP, BrazilSao Paulo State Univ Unesp, Grad Program Elect Engn PGEE, Sorocaba, SP, BrazilSao Paulo State Univ Unesp, Dept Control & Automat Engn DECA, Inst Sci & Technol ICT, Sorocaba, SP, BrazilIeeeUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Alves, Adson Nogueira [UNESP]Ferreira, Murillo Augusto S. [UNESP]Colombini, Esther LunaSimoes, Alexandre da Silva [UNESP]Goncalves, LMGDrews, PLJDaSilva, BMFDosSantos, D. H.DeMelo, JCPCurvelo, CDFFabro, J. A.2023-07-29T11:55:36Z2023-07-29T11:55:36Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject329-3342020 XVIII Latin American Robotics Symposium, 2020 Xii Brazilian Symposium on Robotics and 2020 Xi Workshop of Robotics in Education (lars-sbr-wre 2020). New York: IEEE, p. 329-334, 2020.http://hdl.handle.net/11449/245458WOS:000856082100056Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2020 Xviii Latin American Robotics Symposium, 2020 Xii Brazilian Symposium On Robotics And 2020 Xi Workshop Of Robotics In Education (lars-sbr-wre 2020)info:eu-repo/semantics/openAccess2023-07-29T11:55:36Zoai:repositorio.unesp.br:11449/245458Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:57:35.635899Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
title An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
spellingShingle An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
Alves, Adson Nogueira [UNESP]
title_short An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
title_full An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
title_fullStr An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
title_full_unstemmed An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
title_sort An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
author Alves, Adson Nogueira [UNESP]
author_facet Alves, Adson Nogueira [UNESP]
Ferreira, Murillo Augusto S. [UNESP]
Colombini, Esther Luna
Simoes, Alexandre da Silva [UNESP]
Goncalves, LMG
Drews, PLJ
DaSilva, BMF
DosSantos, D. H.
DeMelo, JCP
Curvelo, CDF
Fabro, J. A.
author_role author
author2 Ferreira, Murillo Augusto S. [UNESP]
Colombini, Esther Luna
Simoes, Alexandre da Silva [UNESP]
Goncalves, LMG
Drews, PLJ
DaSilva, BMF
DosSantos, D. H.
DeMelo, JCP
Curvelo, CDF
Fabro, J. A.
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Alves, Adson Nogueira [UNESP]
Ferreira, Murillo Augusto S. [UNESP]
Colombini, Esther Luna
Simoes, Alexandre da Silva [UNESP]
Goncalves, LMG
Drews, PLJ
DaSilva, BMF
DosSantos, D. H.
DeMelo, JCP
Curvelo, CDF
Fabro, J. A.
description Machine learning methods have been widely employed in robotics over the years, and recent developments in machine learning have completely re-shaped problem-solving in the area. Indeed, if we consider multi-objective planning, these models' optimization and learning capabilities can derive more robust strategies. Inspired by the species natural selection mechanism, Evolutionary Algorithms (EA) are among the best known computational approaches available for this purpose. In this scenario, this work proposed an EA model developed to find the best travel trajectory for a quadcopter in the Desafio Petrobras challenge. In the challenge, a set of landing platforms that the robot has to visit are displaced in the 3D-space. To find the best trajectory possible, we optimize an EA over a low-level control that can take the quadcopter from point A to B. We vary our fitness function to support more complex decisions. The software-in-the-loop technique was applied for a simulated quadrotor in the Coppelia simulated environment. The proposed approach has shown the capability to generate short trajectories while considering variables like UAV dynamics and energy consumption.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2023-07-29T11:55:36Z
2023-07-29T11:55:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2020 XVIII Latin American Robotics Symposium, 2020 Xii Brazilian Symposium on Robotics and 2020 Xi Workshop of Robotics in Education (lars-sbr-wre 2020). New York: IEEE, p. 329-334, 2020.
http://hdl.handle.net/11449/245458
WOS:000856082100056
identifier_str_mv 2020 XVIII Latin American Robotics Symposium, 2020 Xii Brazilian Symposium on Robotics and 2020 Xi Workshop of Robotics in Education (lars-sbr-wre 2020). New York: IEEE, p. 329-334, 2020.
WOS:000856082100056
url http://hdl.handle.net/11449/245458
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2020 Xviii Latin American Robotics Symposium, 2020 Xii Brazilian Symposium On Robotics And 2020 Xi Workshop Of Robotics In Education (lars-sbr-wre 2020)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 329-334
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128440758435840