An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/245458 |
Resumo: | Machine learning methods have been widely employed in robotics over the years, and recent developments in machine learning have completely re-shaped problem-solving in the area. Indeed, if we consider multi-objective planning, these models' optimization and learning capabilities can derive more robust strategies. Inspired by the species natural selection mechanism, Evolutionary Algorithms (EA) are among the best known computational approaches available for this purpose. In this scenario, this work proposed an EA model developed to find the best travel trajectory for a quadcopter in the Desafio Petrobras challenge. In the challenge, a set of landing platforms that the robot has to visit are displaced in the 3D-space. To find the best trajectory possible, we optimize an EA over a low-level control that can take the quadcopter from point A to B. We vary our fitness function to support more complex decisions. The software-in-the-loop technique was applied for a simulated quadrotor in the Coppelia simulated environment. The proposed approach has shown the capability to generate short trajectories while considering variables like UAV dynamics and energy consumption. |
id |
UNSP_0a363666911ce8c56293c19f79b49cf8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/245458 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An evolutionary algorithm for quadcopter trajectory optimization in aerial challengesMachine learning methods have been widely employed in robotics over the years, and recent developments in machine learning have completely re-shaped problem-solving in the area. Indeed, if we consider multi-objective planning, these models' optimization and learning capabilities can derive more robust strategies. Inspired by the species natural selection mechanism, Evolutionary Algorithms (EA) are among the best known computational approaches available for this purpose. In this scenario, this work proposed an EA model developed to find the best travel trajectory for a quadcopter in the Desafio Petrobras challenge. In the challenge, a set of landing platforms that the robot has to visit are displaced in the 3D-space. To find the best trajectory possible, we optimize an EA over a low-level control that can take the quadcopter from point A to B. We vary our fitness function to support more complex decisions. The software-in-the-loop technique was applied for a simulated quadrotor in the Coppelia simulated environment. The proposed approach has shown the capability to generate short trajectories while considering variables like UAV dynamics and energy consumption.Coordena��o de Aperfei�oamento de Pessoal de N�vel Superior (CAPES)Electrical Engineering Graduate Program (PGEE) at the Institute of Science and Technology (ICT) of SorocabaAutomation and Integrated systems Group (GASI) at UnespSao Paulo State Univ Unesp, Grad Program Elect Engn PGEE, Sorocaba, SP, BrazilUniv Campinas Unicamp, Inst Comp IC, Campinas, SP, BrazilSao Paulo State Univ Unesp, Dept Control & Automat Engn DECA, Inst Sci & Technol ICT, Sorocaba, SP, BrazilSao Paulo State Univ Unesp, Grad Program Elect Engn PGEE, Sorocaba, SP, BrazilSao Paulo State Univ Unesp, Dept Control & Automat Engn DECA, Inst Sci & Technol ICT, Sorocaba, SP, BrazilIeeeUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Alves, Adson Nogueira [UNESP]Ferreira, Murillo Augusto S. [UNESP]Colombini, Esther LunaSimoes, Alexandre da Silva [UNESP]Goncalves, LMGDrews, PLJDaSilva, BMFDosSantos, D. H.DeMelo, JCPCurvelo, CDFFabro, J. A.2023-07-29T11:55:36Z2023-07-29T11:55:36Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject329-3342020 XVIII Latin American Robotics Symposium, 2020 Xii Brazilian Symposium on Robotics and 2020 Xi Workshop of Robotics in Education (lars-sbr-wre 2020). New York: IEEE, p. 329-334, 2020.http://hdl.handle.net/11449/245458WOS:000856082100056Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2020 Xviii Latin American Robotics Symposium, 2020 Xii Brazilian Symposium On Robotics And 2020 Xi Workshop Of Robotics In Education (lars-sbr-wre 2020)info:eu-repo/semantics/openAccess2023-07-29T11:55:36Zoai:repositorio.unesp.br:11449/245458Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:57:35.635899Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges |
title |
An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges |
spellingShingle |
An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges Alves, Adson Nogueira [UNESP] |
title_short |
An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges |
title_full |
An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges |
title_fullStr |
An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges |
title_full_unstemmed |
An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges |
title_sort |
An evolutionary algorithm for quadcopter trajectory optimization in aerial challenges |
author |
Alves, Adson Nogueira [UNESP] |
author_facet |
Alves, Adson Nogueira [UNESP] Ferreira, Murillo Augusto S. [UNESP] Colombini, Esther Luna Simoes, Alexandre da Silva [UNESP] Goncalves, LMG Drews, PLJ DaSilva, BMF DosSantos, D. H. DeMelo, JCP Curvelo, CDF Fabro, J. A. |
author_role |
author |
author2 |
Ferreira, Murillo Augusto S. [UNESP] Colombini, Esther Luna Simoes, Alexandre da Silva [UNESP] Goncalves, LMG Drews, PLJ DaSilva, BMF DosSantos, D. H. DeMelo, JCP Curvelo, CDF Fabro, J. A. |
author2_role |
author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Alves, Adson Nogueira [UNESP] Ferreira, Murillo Augusto S. [UNESP] Colombini, Esther Luna Simoes, Alexandre da Silva [UNESP] Goncalves, LMG Drews, PLJ DaSilva, BMF DosSantos, D. H. DeMelo, JCP Curvelo, CDF Fabro, J. A. |
description |
Machine learning methods have been widely employed in robotics over the years, and recent developments in machine learning have completely re-shaped problem-solving in the area. Indeed, if we consider multi-objective planning, these models' optimization and learning capabilities can derive more robust strategies. Inspired by the species natural selection mechanism, Evolutionary Algorithms (EA) are among the best known computational approaches available for this purpose. In this scenario, this work proposed an EA model developed to find the best travel trajectory for a quadcopter in the Desafio Petrobras challenge. In the challenge, a set of landing platforms that the robot has to visit are displaced in the 3D-space. To find the best trajectory possible, we optimize an EA over a low-level control that can take the quadcopter from point A to B. We vary our fitness function to support more complex decisions. The software-in-the-loop technique was applied for a simulated quadrotor in the Coppelia simulated environment. The proposed approach has shown the capability to generate short trajectories while considering variables like UAV dynamics and energy consumption. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2023-07-29T11:55:36Z 2023-07-29T11:55:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2020 XVIII Latin American Robotics Symposium, 2020 Xii Brazilian Symposium on Robotics and 2020 Xi Workshop of Robotics in Education (lars-sbr-wre 2020). New York: IEEE, p. 329-334, 2020. http://hdl.handle.net/11449/245458 WOS:000856082100056 |
identifier_str_mv |
2020 XVIII Latin American Robotics Symposium, 2020 Xii Brazilian Symposium on Robotics and 2020 Xi Workshop of Robotics in Education (lars-sbr-wre 2020). New York: IEEE, p. 329-334, 2020. WOS:000856082100056 |
url |
http://hdl.handle.net/11449/245458 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2020 Xviii Latin American Robotics Symposium, 2020 Xii Brazilian Symposium On Robotics And 2020 Xi Workshop Of Robotics In Education (lars-sbr-wre 2020) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
329-334 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128440758435840 |