Harmony Search applied for Support Vector Machines Training Optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6625103 http://hdl.handle.net/11449/117647 |
Resumo: | Since the beginning, some pattern recognition techniques have faced the problem of high computational burden for dataset learning. Among the most widely used techniques, we may highlight Support Vector Machines (SVM), which have obtained very promising results for data classification. However, this classifier requires an expensive training phase, which is dominated by a parameter optimization that aims to make SVM less prone to errors over the training set. In this paper, we model the problem of finding such parameters as a metaheuristic-based optimization task, which is performed through Harmony Search (HS) and some of its variants. The experimental results have showen the robustness of HS-based approaches for such task in comparison against with an exhaustive (grid) search, and also a Particle Swarm Optimization-based implementation. |
id |
UNSP_0a4b5b1db8ed4a9fc8f7af6da7384ddf |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/117647 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Harmony Search applied for Support Vector Machines Training OptimizationSupport Vector MachinesHarmony SearchFault DetectionsSince the beginning, some pattern recognition techniques have faced the problem of high computational burden for dataset learning. Among the most widely used techniques, we may highlight Support Vector Machines (SVM), which have obtained very promising results for data classification. However, this classifier requires an expensive training phase, which is dominated by a parameter optimization that aims to make SVM less prone to errors over the training set. In this paper, we model the problem of finding such parameters as a metaheuristic-based optimization task, which is performed through Harmony Search (HS) and some of its variants. The experimental results have showen the robustness of HS-based approaches for such task in comparison against with an exhaustive (grid) search, and also a Particle Swarm Optimization-based implementation.UNESP Univ Estadual Paulista, Dept Comp, Sao Paulo, BrazilUNESP Univ Estadual Paulista, Dept Comp, Sao Paulo, BrazilIeeeUniversidade Estadual Paulista (Unesp)Pereira, Luis A. M. [UNESP]Papa, João Paulo [UNESP]Souza, Andre N. de2015-03-18T15:56:37Z2015-03-18T15:56:37Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject998-1002http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=66251032013 Ieee Eurocon. New York: Ieee, p. 998-1002, 2013.http://hdl.handle.net/11449/117647WOS:0003431356001459039182932747194Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 Ieee Euroconinfo:eu-repo/semantics/openAccess2024-04-23T16:11:12Zoai:repositorio.unesp.br:11449/117647Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:34:45.105904Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Harmony Search applied for Support Vector Machines Training Optimization |
title |
Harmony Search applied for Support Vector Machines Training Optimization |
spellingShingle |
Harmony Search applied for Support Vector Machines Training Optimization Pereira, Luis A. M. [UNESP] Support Vector Machines Harmony Search Fault Detections |
title_short |
Harmony Search applied for Support Vector Machines Training Optimization |
title_full |
Harmony Search applied for Support Vector Machines Training Optimization |
title_fullStr |
Harmony Search applied for Support Vector Machines Training Optimization |
title_full_unstemmed |
Harmony Search applied for Support Vector Machines Training Optimization |
title_sort |
Harmony Search applied for Support Vector Machines Training Optimization |
author |
Pereira, Luis A. M. [UNESP] |
author_facet |
Pereira, Luis A. M. [UNESP] Papa, João Paulo [UNESP] Souza, Andre N. de |
author_role |
author |
author2 |
Papa, João Paulo [UNESP] Souza, Andre N. de |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Pereira, Luis A. M. [UNESP] Papa, João Paulo [UNESP] Souza, Andre N. de |
dc.subject.por.fl_str_mv |
Support Vector Machines Harmony Search Fault Detections |
topic |
Support Vector Machines Harmony Search Fault Detections |
description |
Since the beginning, some pattern recognition techniques have faced the problem of high computational burden for dataset learning. Among the most widely used techniques, we may highlight Support Vector Machines (SVM), which have obtained very promising results for data classification. However, this classifier requires an expensive training phase, which is dominated by a parameter optimization that aims to make SVM less prone to errors over the training set. In this paper, we model the problem of finding such parameters as a metaheuristic-based optimization task, which is performed through Harmony Search (HS) and some of its variants. The experimental results have showen the robustness of HS-based approaches for such task in comparison against with an exhaustive (grid) search, and also a Particle Swarm Optimization-based implementation. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01 2015-03-18T15:56:37Z 2015-03-18T15:56:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6625103 2013 Ieee Eurocon. New York: Ieee, p. 998-1002, 2013. http://hdl.handle.net/11449/117647 WOS:000343135600145 9039182932747194 |
url |
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6625103 http://hdl.handle.net/11449/117647 |
identifier_str_mv |
2013 Ieee Eurocon. New York: Ieee, p. 998-1002, 2013. WOS:000343135600145 9039182932747194 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2013 Ieee Eurocon |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
998-1002 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128380845948928 |