Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domains
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s40863-015-0015-3 http://hdl.handle.net/11449/184094 |
Resumo: | We consider the asymptotic behavior of quasilinear parabolic equations posed in a family of unbounded domains that degenerates onto a lower dimensional set. Considering an auxiliary family of weighted Sobolev spaces we show the existence of global attractors and we analyze convergence properties of the solutions as well of the attractors. |
id |
UNSP_0afd955719eff5b5a072b8c3da9dbb34 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184094 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domainsThin domainsp-LaplacianGlobal attractorsWe consider the asymptotic behavior of quasilinear parabolic equations posed in a family of unbounded domains that degenerates onto a lower dimensional set. Considering an auxiliary family of weighted Sobolev spaces we show the existence of global attractors and we analyze convergence properties of the solutions as well of the attractors.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Inst Geociencias & Ciencias Exatas, Rio Claro, SP, BrazilUniv Estadual Paulista, Inst Geociencias & Ciencias Exatas, Rio Claro, SP, BrazilFAPESP: 2012/06753-8FAPESP: 2014/16165-1CNPq: 440371/2014-7SpringerUniversidade Estadual Paulista (Unesp)Silva, Ricardo P. [UNESP]2019-10-03T18:19:48Z2019-10-03T18:19:48Z2015-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article251-262http://dx.doi.org/10.1007/s40863-015-0015-3Sao Paulo Journal Of Mathematical Sciences. Cham: Springer International Publishing Ag, v. 9, n. 2, p. 251-262, 2015.1982-6907http://hdl.handle.net/11449/18409410.1007/s40863-015-0015-3WOS:000449598800007Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSao Paulo Journal Of Mathematical Sciencesinfo:eu-repo/semantics/openAccess2021-10-23T12:39:44Zoai:repositorio.unesp.br:11449/184094Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:02:55.736957Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domains |
title |
Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domains |
spellingShingle |
Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domains Silva, Ricardo P. [UNESP] Thin domains p-Laplacian Global attractors |
title_short |
Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domains |
title_full |
Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domains |
title_fullStr |
Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domains |
title_full_unstemmed |
Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domains |
title_sort |
Upper semicontinuity of global attractors for quasilinear parabolic equations on unbounded thin domains |
author |
Silva, Ricardo P. [UNESP] |
author_facet |
Silva, Ricardo P. [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Silva, Ricardo P. [UNESP] |
dc.subject.por.fl_str_mv |
Thin domains p-Laplacian Global attractors |
topic |
Thin domains p-Laplacian Global attractors |
description |
We consider the asymptotic behavior of quasilinear parabolic equations posed in a family of unbounded domains that degenerates onto a lower dimensional set. Considering an auxiliary family of weighted Sobolev spaces we show the existence of global attractors and we analyze convergence properties of the solutions as well of the attractors. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-01 2019-10-03T18:19:48Z 2019-10-03T18:19:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s40863-015-0015-3 Sao Paulo Journal Of Mathematical Sciences. Cham: Springer International Publishing Ag, v. 9, n. 2, p. 251-262, 2015. 1982-6907 http://hdl.handle.net/11449/184094 10.1007/s40863-015-0015-3 WOS:000449598800007 |
url |
http://dx.doi.org/10.1007/s40863-015-0015-3 http://hdl.handle.net/11449/184094 |
identifier_str_mv |
Sao Paulo Journal Of Mathematical Sciences. Cham: Springer International Publishing Ag, v. 9, n. 2, p. 251-262, 2015. 1982-6907 10.1007/s40863-015-0015-3 WOS:000449598800007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sao Paulo Journal Of Mathematical Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
251-262 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128745716842496 |