Patch-based local histograms and contour estimation for static foreground classification

Detalhes bibliográficos
Autor(a) principal: Pereira, Alex
Data de Publicação: 2015
Outros Autores: Saotome, Osamu, Sampaio, Daniel Souza [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://jivp.eurasipjournals.com/content/2015/1/6
http://hdl.handle.net/11449/129661
Resumo: This paper presents an approach to classify static foreground blobs in surveillance scenarios. Possible application is the detection of abandoned and removed objects. In order to classify the blobs, we developed two novel features based on the assumption that the neighborhood of a removed object is fairly continuous. In other words, there is a continuity, in the input frame, ranging from inside the corresponding blob contour to its surrounding region. Conversely, it is usual to find a discontinuity, i.e., edges, surrounding an abandoned object. We combined the two features to provide a reliable classification. In the first feature, we use several local histograms as a measure of similarity instead of previous attempts that used a single one. In the second, we developed an innovative method to quantify the ratio of the blob contour that corresponds to actual edges in the input image. A representative set of experiments shows that the proposed approach can outperform other equivalent techniques published recently.
id UNSP_0bcd7b6c8bd83a282dc2c8354de82724
oai_identifier_str oai:repositorio.unesp.br:11449/129661
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Patch-based local histograms and contour estimation for static foreground classificationAbandoned and removed object detectionVideo surveillanceVideo segmentationThis paper presents an approach to classify static foreground blobs in surveillance scenarios. Possible application is the detection of abandoned and removed objects. In order to classify the blobs, we developed two novel features based on the assumption that the neighborhood of a removed object is fairly continuous. In other words, there is a continuity, in the input frame, ranging from inside the corresponding blob contour to its surrounding region. Conversely, it is usual to find a discontinuity, i.e., edges, surrounding an abandoned object. We combined the two features to provide a reliable classification. In the first feature, we use several local histograms as a measure of similarity instead of previous attempts that used a single one. In the second, we developed an innovative method to quantify the ratio of the blob contour that corresponds to actual edges in the input image. A representative set of experiments shows that the proposed approach can outperform other equivalent techniques published recently.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Instituto Tecnológico de Aeronáutica (ITA), Praça Mal. Eduardo Gomes, 50, São José dos Campos, BR, CEP 12.228-900Universidade Estadual Paulista, Av. Ariberto Pereira da Cunha, 333, Guaratinguetá, BR, CEP 12.516-410SpringerInstituto Tecnológico de Aeronáutica (ITA)Universidade Estadual Paulista (Unesp)Pereira, AlexSaotome, OsamuSampaio, Daniel Souza [UNESP]2015-10-22T06:25:28Z2015-10-22T06:25:28Z2015-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-11application/pdfhttp://jivp.eurasipjournals.com/content/2015/1/6Eurasip Journal On Image And Video Processing. Cham: Springer International Publishing Ag, v. 2015, n. 6, p. 1-11, 2015.1687-5281http://hdl.handle.net/11449/12966110.1186/s13640-015-0060-yWOS:000356723200001WOS000356723200001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEurasip Journal On Image And Video Processing1.7370,409info:eu-repo/semantics/openAccess2023-11-12T06:14:32Zoai:repositorio.unesp.br:11449/129661Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:30:41.769309Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Patch-based local histograms and contour estimation for static foreground classification
title Patch-based local histograms and contour estimation for static foreground classification
spellingShingle Patch-based local histograms and contour estimation for static foreground classification
Pereira, Alex
Abandoned and removed object detection
Video surveillance
Video segmentation
title_short Patch-based local histograms and contour estimation for static foreground classification
title_full Patch-based local histograms and contour estimation for static foreground classification
title_fullStr Patch-based local histograms and contour estimation for static foreground classification
title_full_unstemmed Patch-based local histograms and contour estimation for static foreground classification
title_sort Patch-based local histograms and contour estimation for static foreground classification
author Pereira, Alex
author_facet Pereira, Alex
Saotome, Osamu
Sampaio, Daniel Souza [UNESP]
author_role author
author2 Saotome, Osamu
Sampaio, Daniel Souza [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Instituto Tecnológico de Aeronáutica (ITA)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Pereira, Alex
Saotome, Osamu
Sampaio, Daniel Souza [UNESP]
dc.subject.por.fl_str_mv Abandoned and removed object detection
Video surveillance
Video segmentation
topic Abandoned and removed object detection
Video surveillance
Video segmentation
description This paper presents an approach to classify static foreground blobs in surveillance scenarios. Possible application is the detection of abandoned and removed objects. In order to classify the blobs, we developed two novel features based on the assumption that the neighborhood of a removed object is fairly continuous. In other words, there is a continuity, in the input frame, ranging from inside the corresponding blob contour to its surrounding region. Conversely, it is usual to find a discontinuity, i.e., edges, surrounding an abandoned object. We combined the two features to provide a reliable classification. In the first feature, we use several local histograms as a measure of similarity instead of previous attempts that used a single one. In the second, we developed an innovative method to quantify the ratio of the blob contour that corresponds to actual edges in the input image. A representative set of experiments shows that the proposed approach can outperform other equivalent techniques published recently.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-22T06:25:28Z
2015-10-22T06:25:28Z
2015-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://jivp.eurasipjournals.com/content/2015/1/6
Eurasip Journal On Image And Video Processing. Cham: Springer International Publishing Ag, v. 2015, n. 6, p. 1-11, 2015.
1687-5281
http://hdl.handle.net/11449/129661
10.1186/s13640-015-0060-y
WOS:000356723200001
WOS000356723200001.pdf
url http://jivp.eurasipjournals.com/content/2015/1/6
http://hdl.handle.net/11449/129661
identifier_str_mv Eurasip Journal On Image And Video Processing. Cham: Springer International Publishing Ag, v. 2015, n. 6, p. 1-11, 2015.
1687-5281
10.1186/s13640-015-0060-y
WOS:000356723200001
WOS000356723200001.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Eurasip Journal On Image And Video Processing
1.737
0,409
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1-11
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128819577487360