Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks

Detalhes bibliográficos
Autor(a) principal: Tomanik, Gustavo H. [UNESP]
Data de Publicação: 2019
Outros Autores: Betting, Luiz E. [UNESP], Campanharo, Andriana S. L. O. [UNESP], Rojas, I, Joya, G., Catala, A.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-030-20521-8_13
http://hdl.handle.net/11449/196249
Resumo: The identification of Interictal Epileptiform Discharges (IEDs), which are characterized by spikes and waves in electroencephalographic (EEG) data, is highly beneficial to the automated detection and prediction of epileptic seizures. In this paper, a novel single-step approach for IEDs detection based on the complex network theory is proposed. Our main goal is to illustrate how the differences in dynamics in EEG signals from patients diagnosed with idiopathic generalized epilepsy are reflected in the topology of the corresponding networks. Based on various network metrics, namely, the strongly connected component, the shortest path length and the mean jump length, our results show that this method enables the discrimination between IEDs and free IEDs events. A decision about the presence of epileptiform activity in EEG signals was made based on the confusion matrix. An overall detection accuracy of 98.2% was achieved.
id UNSP_0c49a1c85fa26df6c60e3b42f2d7ebbe
oai_identifier_str oai:repositorio.unesp.br:11449/196249
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex NetworksElectroencephalographic time seriesInterictal Epileptiform DischargesComplex networksNetwork measuresThe identification of Interictal Epileptiform Discharges (IEDs), which are characterized by spikes and waves in electroencephalographic (EEG) data, is highly beneficial to the automated detection and prediction of epileptic seizures. In this paper, a novel single-step approach for IEDs detection based on the complex network theory is proposed. Our main goal is to illustrate how the differences in dynamics in EEG signals from patients diagnosed with idiopathic generalized epilepsy are reflected in the topology of the corresponding networks. Based on various network metrics, namely, the strongly connected component, the shortest path length and the mean jump length, our results show that this method enables the discrimination between IEDs and free IEDs events. A decision about the presence of epileptiform activity in EEG signals was made based on the confusion matrix. An overall detection accuracy of 98.2% was achieved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sao Paulo State Univ UNESP, Inst Biosci, Dept Biostat, Botucatu, SP, BrazilSao Paulo State Univ UNESP, Botucatu Med Sch, Inst Biosci, Dept Neurol Psychol & Psychiat, Botucatu, SP, BrazilSao Paulo State Univ UNESP, Inst Biosci, Dept Biostat, Botucatu, SP, BrazilSao Paulo State Univ UNESP, Botucatu Med Sch, Inst Biosci, Dept Neurol Psychol & Psychiat, Botucatu, SP, BrazilFAPESP: 2015/222935FAPESP: 2017/09216-7FAPESP: 2018/02014-2FAPESP: 2016/17914-3FAPESP: 2018/25358-9CAPES: 001SpringerUniversidade Estadual Paulista (Unesp)Tomanik, Gustavo H. [UNESP]Betting, Luiz E. [UNESP]Campanharo, Andriana S. L. O. [UNESP]Rojas, IJoya, G.Catala, A.2020-12-10T19:38:36Z2020-12-10T19:38:36Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject152-161http://dx.doi.org/10.1007/978-3-030-20521-8_13Advances In Computational Intelligence, Iwann 2019, Pt I. Cham: Springer International Publishing Ag, v. 11506, p. 152-161, 2019.0302-9743http://hdl.handle.net/11449/19624910.1007/978-3-030-20521-8_13WOS:000490721600013Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances In Computational Intelligence, Iwann 2019, Pt Iinfo:eu-repo/semantics/openAccess2024-08-16T15:46:44Zoai:repositorio.unesp.br:11449/196249Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-16T15:46:44Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks
title Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks
spellingShingle Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks
Tomanik, Gustavo H. [UNESP]
Electroencephalographic time series
Interictal Epileptiform Discharges
Complex networks
Network measures
title_short Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks
title_full Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks
title_fullStr Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks
title_full_unstemmed Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks
title_sort Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks
author Tomanik, Gustavo H. [UNESP]
author_facet Tomanik, Gustavo H. [UNESP]
Betting, Luiz E. [UNESP]
Campanharo, Andriana S. L. O. [UNESP]
Rojas, I
Joya, G.
Catala, A.
author_role author
author2 Betting, Luiz E. [UNESP]
Campanharo, Andriana S. L. O. [UNESP]
Rojas, I
Joya, G.
Catala, A.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Tomanik, Gustavo H. [UNESP]
Betting, Luiz E. [UNESP]
Campanharo, Andriana S. L. O. [UNESP]
Rojas, I
Joya, G.
Catala, A.
dc.subject.por.fl_str_mv Electroencephalographic time series
Interictal Epileptiform Discharges
Complex networks
Network measures
topic Electroencephalographic time series
Interictal Epileptiform Discharges
Complex networks
Network measures
description The identification of Interictal Epileptiform Discharges (IEDs), which are characterized by spikes and waves in electroencephalographic (EEG) data, is highly beneficial to the automated detection and prediction of epileptic seizures. In this paper, a novel single-step approach for IEDs detection based on the complex network theory is proposed. Our main goal is to illustrate how the differences in dynamics in EEG signals from patients diagnosed with idiopathic generalized epilepsy are reflected in the topology of the corresponding networks. Based on various network metrics, namely, the strongly connected component, the shortest path length and the mean jump length, our results show that this method enables the discrimination between IEDs and free IEDs events. A decision about the presence of epileptiform activity in EEG signals was made based on the confusion matrix. An overall detection accuracy of 98.2% was achieved.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
2020-12-10T19:38:36Z
2020-12-10T19:38:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-030-20521-8_13
Advances In Computational Intelligence, Iwann 2019, Pt I. Cham: Springer International Publishing Ag, v. 11506, p. 152-161, 2019.
0302-9743
http://hdl.handle.net/11449/196249
10.1007/978-3-030-20521-8_13
WOS:000490721600013
url http://dx.doi.org/10.1007/978-3-030-20521-8_13
http://hdl.handle.net/11449/196249
identifier_str_mv Advances In Computational Intelligence, Iwann 2019, Pt I. Cham: Springer International Publishing Ag, v. 11506, p. 152-161, 2019.
0302-9743
10.1007/978-3-030-20521-8_13
WOS:000490721600013
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Advances In Computational Intelligence, Iwann 2019, Pt I
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 152-161
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128190524162048