Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-030-20521-8_13 http://hdl.handle.net/11449/196249 |
Resumo: | The identification of Interictal Epileptiform Discharges (IEDs), which are characterized by spikes and waves in electroencephalographic (EEG) data, is highly beneficial to the automated detection and prediction of epileptic seizures. In this paper, a novel single-step approach for IEDs detection based on the complex network theory is proposed. Our main goal is to illustrate how the differences in dynamics in EEG signals from patients diagnosed with idiopathic generalized epilepsy are reflected in the topology of the corresponding networks. Based on various network metrics, namely, the strongly connected component, the shortest path length and the mean jump length, our results show that this method enables the discrimination between IEDs and free IEDs events. A decision about the presence of epileptiform activity in EEG signals was made based on the confusion matrix. An overall detection accuracy of 98.2% was achieved. |
id |
UNSP_0c49a1c85fa26df6c60e3b42f2d7ebbe |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/196249 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex NetworksElectroencephalographic time seriesInterictal Epileptiform DischargesComplex networksNetwork measuresThe identification of Interictal Epileptiform Discharges (IEDs), which are characterized by spikes and waves in electroencephalographic (EEG) data, is highly beneficial to the automated detection and prediction of epileptic seizures. In this paper, a novel single-step approach for IEDs detection based on the complex network theory is proposed. Our main goal is to illustrate how the differences in dynamics in EEG signals from patients diagnosed with idiopathic generalized epilepsy are reflected in the topology of the corresponding networks. Based on various network metrics, namely, the strongly connected component, the shortest path length and the mean jump length, our results show that this method enables the discrimination between IEDs and free IEDs events. A decision about the presence of epileptiform activity in EEG signals was made based on the confusion matrix. An overall detection accuracy of 98.2% was achieved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sao Paulo State Univ UNESP, Inst Biosci, Dept Biostat, Botucatu, SP, BrazilSao Paulo State Univ UNESP, Botucatu Med Sch, Inst Biosci, Dept Neurol Psychol & Psychiat, Botucatu, SP, BrazilSao Paulo State Univ UNESP, Inst Biosci, Dept Biostat, Botucatu, SP, BrazilSao Paulo State Univ UNESP, Botucatu Med Sch, Inst Biosci, Dept Neurol Psychol & Psychiat, Botucatu, SP, BrazilFAPESP: 2015/222935FAPESP: 2017/09216-7FAPESP: 2018/02014-2FAPESP: 2016/17914-3FAPESP: 2018/25358-9CAPES: 001SpringerUniversidade Estadual Paulista (Unesp)Tomanik, Gustavo H. [UNESP]Betting, Luiz E. [UNESP]Campanharo, Andriana S. L. O. [UNESP]Rojas, IJoya, G.Catala, A.2020-12-10T19:38:36Z2020-12-10T19:38:36Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject152-161http://dx.doi.org/10.1007/978-3-030-20521-8_13Advances In Computational Intelligence, Iwann 2019, Pt I. Cham: Springer International Publishing Ag, v. 11506, p. 152-161, 2019.0302-9743http://hdl.handle.net/11449/19624910.1007/978-3-030-20521-8_13WOS:000490721600013Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances In Computational Intelligence, Iwann 2019, Pt Iinfo:eu-repo/semantics/openAccess2024-08-16T15:46:44Zoai:repositorio.unesp.br:11449/196249Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-16T15:46:44Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks |
title |
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks |
spellingShingle |
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks Tomanik, Gustavo H. [UNESP] Electroencephalographic time series Interictal Epileptiform Discharges Complex networks Network measures |
title_short |
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks |
title_full |
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks |
title_fullStr |
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks |
title_full_unstemmed |
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks |
title_sort |
Automatic Identification of Interictal Epileptiform Discharges with the Use of Complex Networks |
author |
Tomanik, Gustavo H. [UNESP] |
author_facet |
Tomanik, Gustavo H. [UNESP] Betting, Luiz E. [UNESP] Campanharo, Andriana S. L. O. [UNESP] Rojas, I Joya, G. Catala, A. |
author_role |
author |
author2 |
Betting, Luiz E. [UNESP] Campanharo, Andriana S. L. O. [UNESP] Rojas, I Joya, G. Catala, A. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Tomanik, Gustavo H. [UNESP] Betting, Luiz E. [UNESP] Campanharo, Andriana S. L. O. [UNESP] Rojas, I Joya, G. Catala, A. |
dc.subject.por.fl_str_mv |
Electroencephalographic time series Interictal Epileptiform Discharges Complex networks Network measures |
topic |
Electroencephalographic time series Interictal Epileptiform Discharges Complex networks Network measures |
description |
The identification of Interictal Epileptiform Discharges (IEDs), which are characterized by spikes and waves in electroencephalographic (EEG) data, is highly beneficial to the automated detection and prediction of epileptic seizures. In this paper, a novel single-step approach for IEDs detection based on the complex network theory is proposed. Our main goal is to illustrate how the differences in dynamics in EEG signals from patients diagnosed with idiopathic generalized epilepsy are reflected in the topology of the corresponding networks. Based on various network metrics, namely, the strongly connected component, the shortest path length and the mean jump length, our results show that this method enables the discrimination between IEDs and free IEDs events. A decision about the presence of epileptiform activity in EEG signals was made based on the confusion matrix. An overall detection accuracy of 98.2% was achieved. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 2020-12-10T19:38:36Z 2020-12-10T19:38:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-030-20521-8_13 Advances In Computational Intelligence, Iwann 2019, Pt I. Cham: Springer International Publishing Ag, v. 11506, p. 152-161, 2019. 0302-9743 http://hdl.handle.net/11449/196249 10.1007/978-3-030-20521-8_13 WOS:000490721600013 |
url |
http://dx.doi.org/10.1007/978-3-030-20521-8_13 http://hdl.handle.net/11449/196249 |
identifier_str_mv |
Advances In Computational Intelligence, Iwann 2019, Pt I. Cham: Springer International Publishing Ag, v. 11506, p. 152-161, 2019. 0302-9743 10.1007/978-3-030-20521-8_13 WOS:000490721600013 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Advances In Computational Intelligence, Iwann 2019, Pt I |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
152-161 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128190524162048 |